

Kirchhoff's Laws

Spectrochemistry fundamentals

•from hot objects are *continuous*, like a rainbow

•atoms only emit light of specific colours, revealing their fingerprints as a *line spectrum*

•atoms in front of a hot object absorb light at these colours, giving an *absorption spectrum*

Generation of Emission or Absorption Line Spectrum

Visible Spectra of common Elements Hydroge Helium Iron

Prism or Diffraction Grating

Early spectroscopes

	Spectral Sequence	in Color	
White			
O5V			
B1V			
A1V			
F3V			
G2V			
KOV			
MOV			
Ca ⁺ Hd Hg	Hb	Na	Ha

Doppler Shift of Light: measuring the speed of objects

 $z = v/c = (1 - l_o)/l_o$

v = velocity of object c = velocity of light (300,000 km/sec) l_o = rest wavelength l = measured wavelength

In 1835, Auguste Comte, the French philosopher and founder of sociology, said of the stars:

"We shall never be able to study, by any method, their chemical composition or their mineralogical structure... Our positive knowledge of stars is necessarily limited to their geometric and mechanical phenomena".

THE NATURE OF STARS

Stellar Properties:

MASS SIZE ENERGY TEMPERATURE DISTANCE CHEMICAL-COMPOSITION MOTION EVOLUTION

Stellar Properties:

MASS SIZE ENERGY TEMPERATURE DISTANCE CHEMICAL-COMPOSITION MOTION EVOLUTION

Stellar Distances

TRIGONOMETRIC PARALLAX

TRIGONOMETRIC PARALLAX

The apparent shift of a "nearby" object with respect to a distant background due to the observer's own motion.

What are the limitations of **Trigonometric Parallax?** Only works for the nearest stars How can we improve upon this method?

Earth based telescopes at best, 0.01" = 100 parsecs = ~326 ly

Hipparcos, 1989, parallax to 0.001'' = 1000 parsecs = 3260 ly

Is there another way to measure distances to stars?

(apparent brightness)

(true energy given off)

(distance)

APPARENT MAGNITUDE (m) How bright an object <u>appears</u> to an observer on Earth

THE MAGNITUDE SCALE Hipparchus (2nd Century B.C.) Brightest stars ð 1st magnitude Faintest stars ð 6th magnitude Modern astronomers kept old system but adapted it to a modern scale A difference of 5 magnitudes is a difference of 100 times in brightness $\sqrt[5]{100} = 2.512$

ABSOLUTE MAGNITUDE (M)

The apparent magnitude of a star at a distance of 33 light years.

Related to the amount of energy the star is emitting

(apparent brightness)-(true energy) μ(distance)

 $m - M = 5 \log d - 5$

$m - M = 5 \log d - 5$

m= -26.5 M=4.83

d=93,000,000 miles

Luminosity vs. brightness

LUMINOSITY:

The amount of energy radiated by a star each second.

BRIGHTNESS:

The amount of energy radiated by a star that is <u>received by an observer</u> at a distance.

Luminosity of the Sun

$L_{x} = 3.9 \times 10^{26}$ watts

390,000,000,000,000,000,000,000,000 watts!

The most luminous stars $L=10^{6} L_{a}$ The least luminous stars $L = 0.0001 L_{a}$

If Absolute Magnitude is related to the amount of energy a star is emitting...

Then

Absolute Magnitude µ Luminosity

But how do we determine a star's luminosity??

Originally categories were based upon the complexities of the spectrum... A, B, C, D, E, ... Q Ultimately found to be similar chemical compositions, different temperatures!

A F B G Coolest Hotest Surface Temperature 06.5 HD 12993 **B0** HD 158659 **B6** HD 30584 A1 HD 116608 A5 HD 9547 F0 HD 10032 F5 BD 61 0367 G0 HD 28099 G5 HD 70178

HD 23524

SAO 76803

HD 260655

Yale 1755

K0

K5

MO

M5

O B A F G K M Oh, Be A Fine Girl, Kiss Me! Oh Brother, Astronomers Frequently Give Killer Midterms. Oh Brother, Another F's Gonna Kill Me. Oh Boy, A Fuzzy Gremlin Kissed Me **Orion Battles Across Far Galaxies Killing Martians** Only Big And Fat Guys Kiss Me Oh Boy, A Furry Green Kiwi-Monster

Hottest → Coolest 0-9 0-9 В 0-9 Α 0-9 F Sun - G2 0-9 G 0-9 Κ Μ 0-9 Coolest

 $L \propto T$

SPECTRAL TYPE & TEMPERATURE TEMPERATURE & LUMINOSITY LUMINOSITY & ABSOLUTE MAGNITUDE

THEREFORE...

SPECTRAL TYPE & ABSOLUTE MAGNITUDE

Henry Norris Russell

Hertzsprung & Russell

$m - M = 5 \log d - 5$

n Took stars of known distances (parallax)
 n Measured their apparent magnitude
 n Calculated the star's absolute magnitude
 n Discovered a relationship...

The Hertzsprung

Russell Diagram

So finally...to determine distances to stars too far away for trigonometric parallax...

Temperature – Radius – Luminosity Relationship

 $L = 4pR^2 sT^4$

L = luminosity of the star R = radius of the star T = surface temperature of the star π,σ = constants

Luminosity and Brightness

Luminosity Classes

I Super Giants
II Luminous Giants
III Giants
IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified...

By spectral type (OBAFGKM) Luminosity class (I,II,III,IV,V)

The Art of Spectroscopic Parallax

- 1) Measure spectral type
- 2) Measure m_v
- 3) Determine luminosity class
- 4) Place on HR diagram
- 5) Read Mv

Example: Record spectrum of star and find it is K0 V type

Read off Mv

Determine visual mag, m_v

 $m - M = 5 \log d - 5$

100 fold error in d