BI.NARY STARS

Binary Stars:

Two or more stars in orbit around each other.

Binary Stars:

n Usually formed together
${ }_{\mathrm{n}}$ Can be complicated multiple systems

Binary Stars:

n Gravitationally bound together
n Stars orbit a common center of mass
. . . More than 66% of all stars are members of binary systems.

Elliptical Orbits
Circular Orbits

Triple Star

Figure 8 Orbits

Double Binary Orbits Quadruple System

Visual Binary Systems:

n Stars that can be resolved (separated) into . two or more stars through a telescope. *
n From direct observations we can plot the orbit of each star.

What about stars that are too close together to be seen as individual stars?

Eclipsing Binary Systems:

When the stars pass in front of each other we see an eclipse.

$$
\left(m_{1}+m_{2}\right) \propto \frac{d^{3}}{p^{2}} \quad \frac{m_{1}}{m_{2}}
$$

The masses of the individual stars can be calculated:

By gathering the masses of a large variety of stars in binary systems a fundamental . relationship soon became apparent.

-1. $4333 \quad 200001000002666664333332600000$ O B A F G K M

Hotest \longrightarrow Coolest

Surface Temperature

Stars within 20ly

What are the stars made out of?

The Sun is composed of: element
by \#
by mass
Hydrogen
92\%
73\% Helium
7.8\%

25\% all others
0.2\%

2\%
-. Carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, iron...

Orion

The Interstellar Medium (ISM)

Composed of gas and dust

ALMOST a perfect vacuum!

Gas:
${ }^{n} 99 \%$ of the ISM
n 1 atom $/ \mathrm{cm}^{3}$ (if spread out uniformily)

Interstellar Gas

n 99\% of the ISM
n 90%. Hydrogen $\sim 10 \%$ Helium. (by number)
n 1 atom $/ \mathrm{cm}^{3}$
n Interstellar Clouds: 1000+ atoms/čm³
n Molecular Clouds: 10^{6} atoms $/ \mathrm{cm}^{3}$

The Interstellar Medium

 Düst:n 1% of the ISM
n 1 dust grain per $10 \mathrm{~cm}^{3}$

Interstellar Dust

n 1% of the ISM
n 50\% of total cosmic carbon \& oxygen
n 1 dust grain/ cm^{3}
n $10^{-4} \mathrm{~mm}$ in size
n Carbon, silicon, oxygen (silicates)
n Coated with ice

Interstellar Medium (ISM)

GAS DUST CHARGED PARTICLES MAGNETIC FIELDS PHOTONS

How do we detect the chemical makeup of the ISM?

 Absorption \& Emission line features

What molecules does the ISM contain?

Symbol	Molecule	Symb ol	Molecule
$\begin{aligned} & \hline \mathrm{H}_{2} \\ & \mathrm{C}_{2} \\ & \mathrm{CN} \\ & \mathrm{CO} \\ & \mathrm{NO} \\ & \mathrm{OH} \\ & \mathrm{NaCl} \\ & \mathrm{HCN} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	molecular hydrogen diatomic carbon cyanogen carbon monoxide nitric oxide hydroxyl sodium chloride hydrogen cyanide water	$\begin{aligned} & \mathrm{H} \mathbf{2}_{2} \mathrm{~S} \\ & \mathrm{~N}_{2} \mathrm{O} \\ & \mathrm{H}_{2} \mathrm{CO} \\ & \mathrm{C}_{2} \mathrm{H}_{2} \\ & \mathrm{NH}_{3} \\ & \mathrm{HCO}_{2} \mathrm{H} \\ & \mathrm{CH}_{4} \\ & \mathrm{CH}_{3} \mathrm{OH} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	hydrogen sulfide nitrous oxide formaldehyde acetylene ammonia formic acid methane methyl alcohol ethyl alcohol

The North American Nebula

Nebula - "cloud"
Nebulae - "clouds"
HII regions
Emission nebulae

-The Rosette Nebula

Orion

The Horsehead Nebula

M16 (The Eagle Nebula)

M16 (The Eagle Nebula)

œesa
www.spacetelescope.org

M16 (The Eagle Nebula)

Cesa
www.spacetelescope.org

STELLAR FORMATION

Giant molecular clouds

Mass $\sim 10^{6} \mathrm{M}_{\dot{\mathrm{u}}}$
Size ~ 100 LY in diameter
Temp ~5-15K (-450ㅇ)

STELLAR FORMATION

Gas Pressure

Outward

(temperature)
GRAVITÁTIONAL CONTRACTION

Stellar Birth

Cloud

Stellar Birth

Stellar Birth

©esa

www.spacetelescope.org

Stellar Birth

Main Sequence Star

The Pleiades Cluster

What is the source of the Sun's energy?

Recall the Sun's Luminosity:
390,000,000,000,000,000,000,000,000 watts

Amount of fuel
Duration $=$
Rate of consumption

Historical attempts to explain . .. energy production

- Chemical Burning (coal; wood, gas)
- 3,000 years

Gravitational Contraction

40 meters/year
50 million years

Albert Einstein (1879-1955)

.n Mass and Energy are equivalent
n A small amount of mass yields a large amount of energy

