F A B G Coolest Hotest Surface Temperature 06.5 HD 12993 **B0** HD 158659 **B6** HD 30584 A1 HD 116608 A5 HD 9547 F0 HD 10032 F5 BD 61 0367 G0 HD 28099 G5 HD 70178 K0 HD 23524

SAO 76803

HD 260655

Yale 1755

K5

MO

M5

Temperature – Radius – Luminosity Relationship

 $L = 4pR^2 sT^4$

L = luminosity of the star R = radius of the star T = surface temperature of the star π,σ = constants

Luminosity Classes

I Super Giants
II Luminous Giants
III Giants
IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified...

By spectral type (OBAFGKM) Luminosity class (I,II,III,IV,V)

STELLAR FORMATION

Gas Pressure

Outward

(temperature)

Inward

Gravity

(mass of cloud)

GRAVITATIONAL CONTRACTION

What is the source of the Sun's energy?

Recall the Sun's Luminosity:

390,000,000,000,000,000,000,000,000 watts

Amount of fuel

Duration =

Rate of consumption

Historical attempts to explain energy production

Chemical Burning (coal, wood, gas) 3,000 years

Gravitational Contraction

40 meters/year

50 million years

Gravitational Contraction

Albert Einstein (1879-1955)

 $E = mc^2$

n Mass and Energy are equivalent

n A small amount of mass yields a large amount of energy

Core

Conditions at the Sun's Core: Core Temp: 15,000,000 K (27,000,000 °F) Core Pressure: 3 trillion pounds/in²

Thermonuclear Fusion

Proton – Proton Cycle 4H ® 1He + 2g

Carbon-Nitrogen-Oxygen Cycle (CNO Cycle)

$4H = 6.693 \times 10^{-24} \text{ gm}$ -1He = 6.645 \times 10^{-24} \text{ gm}

Difference of 4.8x10⁻²⁶ gm (0.7%)

4.8 x 10⁻²⁶ gm

E=mc

LIGHT

Some incredible numbers... The proton-proton cycle occurs 10³⁸ times/second

Each second:

624 million tons of hydrogen Fuses to become 620 million tons of helium 4 million tons of hydrogen becomes energy

4 million tons of matter becomes energy

4 million tons of water

$M_{\pi} = 1.99 \times 10^{30}$ kilograms

Sun's lifetime ~ 10 billion years

Radiation Escape from the Core – The drunken Random Walk

 $\mathsf{D} = (\mathsf{d}/\mathsf{I})^2$

Main Sequence Lifetime

15 M. _ 10⁷ years 0.5 M. _ 3x10¹⁰ years Why does a more massive star live a shorter lifetime? **Fuel consumption!** 15 M. $10^7 - 10^8$ K 0.5 M. _ 10⁶'s K Lifetime of star on MS α 1/ M³ = M⁻³

30% – 40% of total mass is lost

2. Intermediate Mass Stars 0.5 < M, < 8</p>

Planetary Nebula (has nothing to do with planets!!)

Life Cycle of the Sun

White Dwarf Stars

n Composed mostly of carbon n Surface temperatures of 50,000 K or more n <u>NO</u> internal energy source n Earth sized n Mass is that of remnant stellar core n VERY DENSE!

White Dwarf Star

11,000 tons per cubic inch

Limit ~ 1.4 solar M

40 Eridanus B

What stopped the gravitational collapse of the white dwarf?

The electrons did!

Gradits

Electrons have a limit to how tightly they can be packed together
"ELECTRON DEGENERACY PRESSURE"

BUT! Electron Degeneracy Pressure has its limits

Gravity can overwhelm the electrons if the mass is high enough..

M < 1.4 M. Chandrasekhar Limit

What happens if the core of the star that remains is GREATER than the Chandrasekhar Limit?

3. High Mass Stars M. > 8

25 M. star <u>Element</u> Hydrogen Helium Carbon Neon Oxygen Silicon Iron

Temperature 4x10⁷ K 2x10⁸ K 6x10⁸ K 1.2x10⁹ K 1.5x10⁹ K 2.7x10⁹ K none!

Duration 7x10⁶ yrs 5x10⁵ yrs 600 yrs 1 year months days hours

Silicon \rightarrow Iron

Iron core

Iron core < 1.4M. Continual silicon fusion increases mass of core Eventually Iron core = 1.4M.

Iron core > 1.4M. Iron core cannot support itself against gravity Iron core collapses...

Fe

Supernova 1987a

Three releases of energy:

Electromagnetic (light)
 Kinetic energy of exploding material
 Neutrino escape

1x 100x 10000x

For a brief time a supernova explosion will out shine an entire galaxy in electromagnetic energy

Supernova 1987a

Kinetic energy: 100x the EM energy:

10⁴⁷ Joules*, enough energy to accelerate the mass of the sun to 3.3% speed of light, c

*the energy required to lift a small apple one metre straight up.

- Neutrinos: chargeless, very small or massless, weakly interacting particle
- Produced by nuclear reactions
- As fuels at carbon and beyond burn in core of high mass star, their release goes up dramatically, cooling the core
- Pass through light years of lead and not interact
- 10¹⁰ pass through every cm² of your body every second

Neutrino release: 10000x the EM energy:

10⁴⁹ Joules, enough energy to accelerate the mass of the sun to 99% speed of light, c

July, 1054 A.D.

Synthesis of the Elements

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 <u>He</u> 4.003
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{Al}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{76}{Os}$ 190.2	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

Isotopes of the elements

 ${}^{12}C = 6 \text{ protons} + 6 \text{ neutrons}$ ${}^{13}C = 6 \text{ protons} + 7 \text{ neutrons}$ ${}^{14}C = 6 \text{ protons} + 8 \text{ neutrons}, \text{ unstable } t_{1/2} = ~6000 \text{ years}$ ${}^{15}C = 6 \text{ protons} + 9 \text{ neutrons}, \text{ unstable } t_{1/2} = ~12 \text{ years}$

Historical

1930's Hans Bethe discovers mechanisms by which stars shine
fusion of hydrogen to helium primary energy source

• In the 1940's and early 1950's as Big Bang picture for origin of Universe was developing – elements cooked up early in expansion

• Early 1950's this started to give way to the stars being the most likely place

Fred Hoyle, Cambridge
William Fowler, Cal Tech
Geoffrey Burbidge
Margarate Burbidge

• The seminal observation was detection of technetium in atmospheres of old (>several 10⁹ years) stars

Energy Production in Stars

$\begin{array}{c} \text{Main Sequence} \\ 4\text{H} & \longrightarrow & \text{He} \end{array}$

0.7% of mass converted to energy by $E = mc^2$

Off main sequence

He \longrightarrow C, O, Ne C, O, Ne \longrightarrow Si, P, S Si, S, P \longrightarrow Fe, Co, Ni Much lower energy obtained from these reactions

End of line, most stable nuclei

The problem: Synthesis of Carbon-12

- $4H \longrightarrow He$ $He + H \longrightarrow [Li] \longrightarrow He + H$ $He + He \longrightarrow [Be] \longrightarrow He + He$
 - He + He + He $\longrightarrow [^{12}C]^* \xrightarrow{\text{rast}} 3$ He Triple alpha Process

gamma ray

Fred Hoyle solved this

The 3rd Dimension of the Periodic Table

Valley of Stability

Nucleosynthesis in Stars by s-process (slow neutron capture)

1	Se66	Se67	Se68	Se69	Se70	Se71	Se72	Se73	Se74	Se75	Se76	Se77	Se78	Se79	Se80
	0+	~	0+	(3/2-)	0+	3/2-5/2-	0+	9/2+	0+	5/2+	0+	2-		→	0+
		ECp	EC	ECp	EC	EC	EC	EC	0.89	EC	9.36	7.65	23.78	β.	49.61
	A\$65	As66	A367	A:68	As69	As70	As71	As/2	As73	As74	As75	A576	As77	As78	As79
			(5/2-)	3-	5/2-	4(+)	5/2-	2-	3/2-	2-	3/2	\rightarrow	32-	2	3/2-
	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,8	100	β	8	β.	β.
	Ge64	Ge65	Geőő	Ge67	Ge68	Ge69	Ge70	Ge71	Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78
	0+	(3/2)-	0+	1/2-	0+	5/2-	64	.	•) +		\rightarrow	0+	7/2+	0-
er	EC	ECp	EC	EC	EC	EC	21.23	EC	27.66	7.75	35.94	β .	7.44	9	9
p	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	Ga69	Ga70	Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77
	3/2-5/2-	0+	3/2-	0-	3/2-	1+	3	\rightarrow	3.2-	\rightarrow	32-	(3-)	32-	(2+,3+)	(3/2-)
JU	EC	EC	EC	EC	EC	EC	69,165	ECS	39.882	9		β		9	
D	Zn62	Zn63	Zn64	Zn65	Zn66	Zn67	Zn68	Zn69	Zn70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76
	0+	3/2-	0+	5/2-	0+	52-	<u></u> !:	-	0+	→ I	0-	(1/2)	0+	(7/2+)	0+
0	EC	EC	45.6	EC	27.9	41	18.8	β.	0.6	β.	8	β	\$		9
P	Cuól	Cu62	Cu63	Cu64	Cu65	Cu66	Cu67	Cu68	Cu69	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75
	3/2-	1+	3/2	\rightarrow	3/3	→ ·	3/2-	1+	3/2-	(1+)	(3/2-)	(1+)		(1+,5+)	1
	EC	EC	69.17	ECR	30.55	8	9	e *	8	9		8	8	9	8.
	Ni60	Ni61	Ni62	N103	Ni64	N105	N100	N107	N168	N169	N170	N171	N172	N173	N174
	0+	3/2-	6+	•	0+	2	0+	(1/2-)	0+	11.4 s	0+	130 1	0+	0301	0+
	26,223	1.140	3.634	9	0,926	8	9	9	8	9		8	8	9	9

Neutron number

Nucleosynthesis in Stars by r-process (Rapid neutron capture)

1	Se66	Se67	Se68	Se69	Se70	Se71	Se72	Se73	Se74	Se75	Se76	Se77	Se78	Se79	Se80
	0+		0+	(3/2-)	0+	3/2,5/2	0+	9/2+	0+	5/2+	0+	1/2-	+	7/2+	0+
		ECp	EC	ECp	EC	EC	EC	EC	0.59	EC	9.56	7.63	23.78	β.	49.61
	As65	As66	As67	A:68	As69	As70	As71	As72	As73	As74	As75	A576	As77	As78	As79
			(5/2-)	3-	5/2-	4(+)	5/2-	2-	3/2-	2-	3/2-	2	X	<u> </u>	3/2-
	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,8	100	β	\$ ¹	β.	β.
	Ge64	Ge65	Geőő	Ge67	Ge68	Ge69	Ge70	Ge71	Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78
	0+	(0.2)-	0+	1/2-	0+	5/2-	0+	1/2-		9/2+	0+	1/2-	0+		0+
er	EC	ECp	EC	EC	EC	EC	21.23	EC	27.60	7.75	35.94	β	7.44	B.	9
Ib	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	G269	Ga70	Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77
	3/2-5/2	0+	3/2-	0-	3/2-	1+	3/2-	1+	<u> -</u>	-	->2			(1)	(22.)
JU	EC	EC	EC	EC	EC	EC	60.105	ECA	39.892	p		β .		9	
	Zn62	Zn63	Zn64	Zn65	Za66	Zn67	Zn68	Zn69	Zm70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76
	0+	3/2-	0+	5/2-	0+	5/2-	0+	12	0+			2(2)	2.01	()2+)	0+
01	EC	EC	48.6	EC	27.9	41	18.5	β.	0.6	р ¹	» K	в	8		9-
Pr	Cuól	Cu62	Cu63	Cu64	Ca65	Cuóó	Cu67	Cu68	Cu69	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75
	3/2-	1+	3/2-	1+	3/2-	2.000 m	>2-		32	1-1	10.05	N+)		(1+,5+)	1
	EC	EC	02.17	EC.8	30.53	8	9		8	9		8		9	8.
	Ni60	Ni61	Ni62	N103	Ni64	N105	N100	N107	N163	N109	N170	N171	N172	N173	N174
	0+	3/2-	0+	1001 y 1/2-	0+	2.5172 5	54.0 %	(2.2-)	29 1	11.41		1.50 1	0+	0.90 1	0+
	26 223	1.140	3.634	9	0.926	8	8	9	8	9		8		9	0

Neutron number

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

October, 1957

B²FH

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	$\frac{1}{1000}^{2}$
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{\text{Al}}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{\overset{76}{\text{Os}}}{\overset{190.2}{190.2}}$	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

Big Bang Nucleosynthesis

Stellar Evolution

Nucleosynthesis of elements heavier than iron **S-Process** n Occurs in post-main sequence giants ⁿ Creation of stable nuclei up through ²⁰⁸Pb (lead) and ²⁰⁹Bi (bismuth) n Neutron Capture $^{13}C + ^{4}He \dot{a} ^{16}O + neutron$ If iron "seed" nuclei are available then: ⁵⁶Fe + nà ⁵⁷Fe + nà ⁵⁸Fe + nà ⁵⁹Fe + nà ⁵⁹Co

R-Process

 n Creates the heaviest (neutron rich) elements
 n Involves creation of highly unstable nuclei
 n Very rapid neutron capture helps create stable nuclei
 n Requires very high temperatures and high

"neutron flux"

n Supernovae environment

NEUTRON STARS

What happened to the iron core after the supernova?

NEUTRON STAR

N N N N N Ν N N N N N N N N N N N N N N N N N N N Ν N Ν N N N N N Ν N N N N N N Ν N N N N N N Ν N N N Ν N N N Ν Ν Ν N Ν N N N N N N N N N N

neutron star

Solar-mass white dwarf

Earth

What keeps the neutron star from collapsing? Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν

NEUTRON DEGENERACY PRESSURE Neutrons have a limit to how tightly they can be packed together

Ν

Ν

Chandrasekhar Limit for neutron stars

M < 3.0 M.

How do we know that neutron stars actually exist? First theorized in the 1930's First discovered in 1967

Jocelyn

Bell

"pulsed" energy every 1.34 seconds

Conservation of Angular Momentum

 \langle

Faster

Rapidly rotating neutron star

-or-PULSAR

The Crab Nebula

What if the iron core > 3.0M.

n Degeneracy pressure is overcome by gravity

n The core continues to shrink producing NO HEAT.

n No force in nature can stop the collapse

G = Universal Gravitational Constant
 M = Mass of the gravitating body
 R = Radius of the gravitating body

Gravity

 Gm_1m_2 2*GM* F V_{esc} r^2 R

Soon the escape velocity is greater than the speed of light!

Radius = 0Mass = mass of the original core

Singularity

R = Schwartzschild Radius Size of event horizon depends only on MASS

Mass bends space and time

very peculiar effects on timespace becomes warped

In orbit around a Black Hole

In orbit around a Black Hole at Event Horizon

	0	
Dropped frames:	0	Sto
File size:	0	Rem
Video length:	0 Seconds	Heso
Capture length:	0 Seconds	
Capture Propertie	s	
Frame size:	404 x 388	
Frame rate:	15.0 frames/sec	
Colors:	65536 colors	
Compression:	Microsoft Video 1	
Record audio:	Enabled	

Examples

 $M = 3 \, M_{\bullet} \qquad R_{S} = 9 \, km \, (5.4 \, mi) \\ M = 1 \, M_{\bullet} \qquad R_{S} = 3 \, km \, (1.8 \, mi) \\ M = 1 \, M_{earth} \qquad R_{S} \sim 1 \, cm$

If we can't see 'em, how do we find 'em?

Solitary stellar mass black hole

Solitary stellar mass black hole

