WHERE DO WE SEARCH FOR LIFE IN THE UNIVERSE?

What makes the Earth unique?

n. Source of "heavy elements"
n Distance from the Sun
(The Habitable Zone)
n Planetary Mass (Escape

- Velocity)
\therefore Solid Body (Provides a stable surface)
${ }^{n}$. Possession of a relatively large naturál satellite

The Role of $\mathrm{H}_{2} \mathrm{O}$ As a

 Solventn Provides a fluid for nutrients to floât in.
n Has the ability to dissolve other chemical -compounds.
r Requires a
\therefore temperature between $0-100^{\circ} \mathrm{C}$ to remain liquid
n - Helps regulate the temperature in cells.
n High heät capacity
(minimizes the effect of sudden heat changes)
n. High heat of
vaporization
(Ammonia \& Methyl Alcohol are comparable but not as versatile):

The Role of $\mathrm{H}_{2} \mathrm{O}$ As a Solvent

Density Variation of Pure Water wi

The Role of $\mathrm{H}_{2} \mathrm{O}$ As a part of the mantle/crust

${ }^{n}$ Becomes a hydrated part of mineral structure
n Dramatically lowers melting point of rock:
n. Lowers viscosity of lava (flows more easily)
n Anywhere from 0.5 to 2.5 times surface water volume locked up
n - Elasticity of crust greatly augmented: leads to crust being readily deformed
n Lubricates movements of plates on the mantle
n Venus does not have hydrated minerals, rock melts much higher, crust and mantle much stiffer-no tectonics!!

The Habitable Zone (0.85-2.0.AU's)

The Distance From the Sun
 Case 1: Too Close (rưnaway greenhouse effect)

The Distance From the Sun

Case 1: Too Close (rünaway greenhouse effect)
n Start with oceans of water and moderate temperatures
${ }^{n} \mathrm{CO}_{2}$ is naturally "dissolved in oceans and chemically combined in rocks

The Distance From the Sun

Case 1: Too Close (runaway greenhouse effect)
n Create modest additional heating
n Increased evaporation from oceans \& release of CO_{2} from rocks
n Increase in atmospheric water vapor \& CO_{2} amplifies existing greenhouse effect causing increased evaporation and outgassing causing additional heating....

The Distance From the Sun
Case 2: Too Far (runàway refrigerator effect)
${ }_{n}$ Start with oceans of water and moderate temperatures
n Reduced amount of -incoming solar energy.

- cools atmosphere and
\therefore oceans
n Polar caps increase in size

The Distance From the Sun

Case 2: Too Far (runaway refrigerator effect)
n Leaves less water vapor in atmosphere
n Increases reflectivity of surface which in turn cools atmosphere
n. Temperatures drop causing a further increase in polar caps which in turn leaves less water vapor in, atmosphere....

Localized Habitable Zones: Natural satellites orbiting unsuitable worlds

Planetary Mass (Escape Velocity)

 n Smaller mass planets cannot retain their atmosphere

Larger Mass Planets

n Larger mass planets cannot lose their hydrogen
n* Presence of hydrogen*

- affects initial chemistry of life

Intermediate Mass Planets

n. Outgas longer than small mass planets

n Can retain a sizeable .atmosphere
${ }^{n}$ Survive impacts
$\therefore \quad$ while retaining their atmosphere
n Plate tectonics

Possession of a Relatively Large Națural Satellite

Are these Earth-like conditions common throughout the galaxy?

In our solar system:
n 1 out of 9 worlds
n. Nearly 3 out of 9 \therefore worlds

FOOD FOR THOUGHT...

The existence of a planet identical to Earth does not guarantee life will develop.
n. Life does not necessarily require an Earthlike planet to flourish.

WHERE DO WE SEARCH FOR LI FE IN THE UNIVERSE?

Which Stars Deserve Our Attention?

n Spectral Types
${ }_{n}$ Multiple Star Systems

- . Stellar Populations
$\therefore \quad$ Perhaps it is better to eliminate stars rather than to include them?

Galactic Dead Zones

Stellar Populations

Populations are based upon stellar metallicity
n Population I stars have "high" metallicity
n Population II stars have "low" metallicity

Galactic Dead Zones

n Stars in the galactic nucleus are metal poor (Pop II)
n Stars in the galactic halo are mostly metal poor (Pop II)
n Stars in the galactic outskirts are metal poor • • (Pop II)
n Studies show that extrasolar planets tend to belong to Pop I stars

Xray image of galactic center

Radio image of galactic center

Supermassive Black Holes

Galactic Danger Zones:

 Nucleusn Numerous supernova remnants
n Supermassive black hole
n Flooded with high energy photons
n* Highly energized gasses*
n Gravitationally "disturbed" by crowded conditions

Galactic Danger Zones:

Spiral Arms
n Gravitationally perturbed
n . Interstellar cloud chaos
n Sun avoids spiral arms
n. Sun has nearly circular orbit around galaxy
$\because_{\text {n }}$ Sun has a "synchronized". rotation with spiral arm

Galactic Habitable Zone

HABITA日LEZONE

HAgITAELEZONE
OUTEALIVIT

Stellar Habitable Zones

Spectral Types

n Stellar Lifetimes
n Sizeable Habitable Zone

Low Mass Stars

n Very.long stellar lifespan
n Hàbitable Zone is too small
n Risks tidal locking with planet
Alternation of conditions probably necessary to help the initial chemistry of life
n Freezing / thawing
n Wet / dry

Hotter Stars

Sun-like Stars

Cooler Stars

Low Mass Stars

Not absolute:
Mercury, 3:2 spin-orbit resonance made possible by relatively large e.
"Venus, $3: 2$ spin orbit resonance with Earth, every 3 Venus rotations $=2$ Earth years

Circular versus more elliptical orbbit

Scientists find most Earth-like planet yet

Models predict planet should be either rocky or covered with oceans

50% larger than earth, 5 times the mass . 150 lb person would weight 333 lbs Temperature: $32-104^{\circ} \mathrm{F}$

6,0,00,000 miles from M type star .13 days to complete orbit

Elimination of Low Mass Stars

If we eliminate all stars that have a luminosity that is less than 1% of the Sun's, then we eliminate nearly 75% of all stars in the Milky Way!
n 225 billion stars eliminated
n 75 billion stars left

High Mass Stars

n Large Habitable Zone
n Nasty forms of EM energy
n Lifespan too short
$\%$

Elimination of High Mass Stars

Roughly 1\% of all Milky Way stars are considered high mass stars that do not meet certain minimum criteria
n 3 billion stars eliminated

* n 72 billion stars left

Which Spectral Types Deserve Consideration?

F5-K8

The sun and all stars gradually move off the MS

Why is this?
long-period variables

Hydrostatic Equilibrium

The sun and all stars gradually move off the MS

Why is this?

$$
P V=n R T
$$

$\mathrm{n}=$ particle density
$\because \quad 4 \mathrm{H} \longrightarrow \mathrm{He}$ So...n is decreasing
P and V in core are not decreasing

To compensate, T must increase

Energy production ~

 T^{4}The sun and all stars gradually move off the MS

$$
\mathrm{PV}=\mathrm{nRT}
$$

Energy production ~ T^{4}

Increases P leading to increase in stellar diameter :

$$
L=4 \pi R^{2} \sigma T^{4}
$$

Which Neighboring Stars Should

 Wẹ Consider?n Spectral Type F5 - K8
n Stellar Metallicity?
n Eliminate Multiple Star Systems?
${ }^{*}$ Consider Stellar Luminosity (not too high,, not to low)
${ }^{n}$ Consider Stellar Mass (not to high, not too low) F5-K8

Number of planets by year of discovery

Doppler shift planet discovery

Planet Orbiting Star HD46375

The "wobble" method gets

Change in star's velocity $(\mathrm{m} / \mathrm{s}$

As planet swings around the bock of stor, it tugs the star slightly oway from Earth.

Time (days)
Orbital period $=3.02$ days
Orbiting planet $=80 \%$ of Saturn's mass the orbital period, semimajor axis, and a lower limit on the mass of the planet. This has detected down to 7 Earth-mass planets very close in, (but favors gas giant planets).

First Rocky Exoplanet Detected

- Most known exoplanets are large and have low densities - similar to jovian planets in our solar system
- A space telescope recently discovered a planet with radius only 70\% larger than Earth's
- Groundbased observations show the planet's mass is less than 5 times Earth's
- Together, the observations reveal that the planet's density is similar to Earth's - the first confirmation of a "rocky" exoplanet

Artist's conception of the view of the rocky planet's parent star (Corot-7) from above the surface of the planet (Corot-7b). Image from ESO / L. Calcada.

How Can We Find a Planet's Density?

- Density = Mass / Volume
- The planet's mass was determined using the radial velocity method: The planet gravitationally 'tugs' on the star, shifting the wavelength of light the star emits back and forth. The amount of shift indicates the planet's mass.

Changes in the measured wavelengths of star light are caused by a planet with mass ~ 5 times Earth's.

- Volume $=4 / 3 \pi R^{3}$
- The planet's size was determined using the transit method:

The amount of light measured from a star decreases when a planet passes in front. The amount of decrease indicates the planet's size.

Periodic decreases in light from the star are caused by a planet with diameter 1.7 times Earth's passing in front.

The Big Picture

- After discovering hundreds of exoplanets resembling our jovian planets, astronomers have found the most Earth-like planet to date
- Although planet Corot-7b's density is close to Earth's, differences abound: it orbits its star in ~ 20 hours (faster than any known exoplanet) - so close that its rocky surface may be molten
- With the existence of Earth-like planets now demonstrated, astronomers have reason to hope that the Kepler mission will discover more

Detection of more rocky exoplanets ('Super-Earths') like those in this artist's depiction should come rapidly, thanks to dedicated space telescopes and improving ground-based detection capabilities. Image from D. Aguilar, Harvard Smithsonian CfA.

Exoplanet HD 209458b: Water, CH4 and CO2

2007, K and Na in atmosphere:

 hazes and dust2009, CO_{2} in atmosphere:

2010, first ever direct spectrum of exoplanet

HAT-P-7 Light Curves

Ground-based Measurements

9
0
$-\frac{1}{0}$
0
0

Kepler Measurements

Time (In Days)

HAT-P-7b data from the ground

Kepler Commissioning data

Measurement scatter is within the line thickness.

Magnification by 7 shows transits + occultation

Occultation is the size of a transit by Earth-size planet.

Rise in light between transits is discovery of light from the planet itself.

Planet Size

Numbers of Planet Candidates

- 68 Earth-size
- 288 super-Earth size

- 662 Neptune size
- 165 Jupiter size
- 19 super-Jupiter size

165

The Discovery of New Solar Systems is Accelerating

Kepler's Richest Planetary Systems

The Discovery of New Solar Systems is Accelerating

Gravitational Microlensing

* Planot

*

$*$

Planet occurrence Depends on ron in Stars

Semimajor Axis (AU)

Multiple Star Systems

Generally thought to be unsuitable for planets
n Gravity prevents planetary formation.
n. Gràivity makes stable \therefore orbits impossible

Mzar, 88 light years distant, is the middle star in the handle of the Big Dipper. It was the first binary star system to be imaged with a telescope. Spectroscopic observations show periodic Doppler shifts with a period of 20.54 days in the spectra of Mizar A and B, indicating that they are each binary stars. But they were too close to be directly imaged - urtil 1 May 1996. when the NPOI produced the first image of

Mizar A. That image was the highest angular resolution image ever made in optical astronomy. Since then, the NPOI has observed Mizar A in 23 different positions over half the binary orbit. These images have been combined here to make a movie of the orbit. As a reference point, one component has been fixed at the map
center; in reality, the two stars are of
comparable size and revolve about a
common central position

[^0]
Multiple Star Systems (cont'd)

Perhaps planets possible if:
n Planets orbit close to one member of sysțem
n - Planets orbit at a
\therefore large distance from both members

-Multiple Stär Systems (cont’d)

-Multiple Stär Systems (cont’d)

Multiple Stąr Systems (cont'd)

The Sun's Neighborhood

Is a Search Worth It?

n Is the chemistry of Life common in the Universe?
n Are Earth-like conditions common?
n Are their other "suitable stars" in our

- galaxy?
n Do extrasolar planets exist?
n Is the existence of life elsewhere in the galaxy beyond the realm of possibility?

Search Strategies

n How do we conduct the search?
n . What should we be looking for?
\dot{n} What are we going to find?

[^0]: 1996-05-01
 6.3 mas

 287 deg

