Curiosity on the way to Mars

How Many Are Out There?

What do we REALLY hope to

 find?
Alien microbes on a rather inhospitable world...

Intelligent extraterrestrials that we \therefore can communicate with to share \therefore ideas about culture, technology, and science.

What are our chances that we might truly be alone?

If we are not alone, how many are there like us?

Frank Drake

n NRAO - Green Bank W.V.
n Director of Project OZMA (later Project SETL)
${ }^{n}$ Currently Chairman of
\therefore the Board of Trustees
 for SETI Institute

The Drake Equation - 1961

n Used to estimate the number of communicative civilizations in the Milky Way
n Variables are used to represent individual factors related to the overall concept.
n Each variable can either be scientifically determined or an educated guess can be made.
n Variables range from reliably estimated to controversial

The Drake Equation (cont’d)

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

N = the number of communicative civilizations
.n The number of civilizätions in the Milky Way whose emissions are detectable
n Equation is meant as a tool that organizes our thinking rather than restrict our. efforts
R^{*}

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$R^{*}=$ The rate of formation of suitable stars -
Recall considerations:
n Large enough habitable zone
n Not too energetic
n. Long enough lifespan
\because n Single star preferred
R^{*}
n Involves the rate of star formation AND how many of them are considered suitable
Star formation is generally accepted to be 10-25 stars per year.
n. More low mass stars formed than - high mass
n Star formation has probably slowed over time

R*
n If we use our previous spectral type range of F5 - K8
n If we assume 300 billion stars in MW
.n Approximately 70 billion stars
" n ~ 24\% of all MW stars are "suitable" 3-6 suitable stars form per year
f_{p}

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$f_{p}=$ the fraction of those stars with planets
${ }_{\mathrm{n}}$ Astronomers generally suspečt that planetary formation is very common.
n Discovery of extrasolar planets by Marcy \& Butler seems to confirm this.

f^{\prime}
 p

n Beta Pictoris
n Orion protoplanetary disks

$$
f_{p}=20 \%-50 \%
$$

n Could be higher (perhaps 100\%)

* Future observations with higher sensitivity will help settle this variable down.

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$\mathrm{n}_{\mathrm{e}}=$ the number of "earths". per planetary system
n Planets that are located within the habitable
\therefore zone
n Planets that have similar conditions to the Earth

n_{e}

n Consider the number of planets per stellar system
n Our solar system has 1 and nearly 3 "earths"
${ }^{n}$ Earlier in our solar system's past, the

- number was probably more like 3

$$
n_{e}=1 / 10-4
$$

f. $N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L$
$\mathrm{f}_{\mathrm{l}}=$ the fraction of those planets where life actually develops
n Marks the point in the equation where observational science gives way to pure speculation
n We have only one example - Earth

$\mathbf{f}_{\text {I }}$ - speculation

The optimist would say:
n the chemistry of life is universal
n given enough time, life is inevitable
The pessimist would say:
n Life on Earth benefited from a series of circumstances that are perhaps unique ("Rare

- Earth" hypothesis)
* n Some planets that form life might fail to sustain it
n Cosmic catastrophes will affect survival of life

$$
\mathbf{f}_{\mathrm{i}}=\mathbf{1}
$$

f_{i}

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$\mathrm{f}_{\mathrm{i}}=$ The fraction of life bearing planets-where intelligence develops.

What is the

 definition of- intelligence?

What is Intelligence?
${ }_{\mathrm{n}}$ Cómpotential: consists of mental mechanisms for processing information:
n Experiential: involves dealing with new tasks or situations and the ability to use mental processes automatically.
n. Contextual: the ability to adapt to,
\therefore select, and shape the environment.
n Technological: the capacity for science and technology.

What is Intelligence?

$\mathrm{EQ}=$ Encephalization Quotient $=$
(brain weight)/(0.12 (body weight) ${ }^{0.67}$)
$\mathrm{EQ}<1$: animals less brainy than expected for their body size
EQ > 1: animals more brainy than expected for their body"size

What is Intelligence?

Among primates this correlates with innovatory behavior, social learning and tool use

Among birds behavioral flexability
Humans = 7.1 Homo erectus = 5.3 Homo habilis $=4.3$
" "Dolphins $=4.6$ (5.0 highest)

$$
\operatorname{Dog}=1: 2
$$

Great apes $=1.9-2$
Cat $=1.0$
f_{i}

Is intelligence inevitable?

Does natural selection quarantee

 intelligence?n In general, natural selection tends to lead to complexity.
n Development of intelligence has a great survival value.
n Caution: Intelligence does not guarantee survival!

5

Somewhere, something went terribly wrong
n The speed with which intelligence has developed is encouraging
n. 700 million years for lifé to progress from .
\therefore very basic to incredible diversity and intelligence
Let's be optimistic and say $\mathrm{f}_{\mathrm{i}}=1$
f_{c}

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$\mathrm{f}_{\mathrm{c}}=$ the fraction of planets where communicative technology develops
n Development of intelligence does not necessarily lead to technology
n . A species might be intelligent but not have
\therefore the need or the means for tool making
n Remote possibility that a species works very hard to NOT-broadcast their presence.

f_{c}

ON THE OTHER HAND...
n IF intelligent species develop technology, we can assume that certain milestones would be similar for all:
n. "Local" broadcasts would "leak to space
-n Basic curiosity might lead to intentional broadcasts.

$$
f_{c}=0.75-1
$$

$$
\mathbf{L} \quad N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$\mathrm{L}=$ The lifetime of a communicating civilization
n We have been leaking signals into space for about 100 years,
n. We have had the ability to intentionally
$\therefore \quad$ broadcast signals into space for the last 50 years.

BIOHAZARD

L

Does intelligence carry with it the seeds of inevitable destruction?

There are many man made potential catastrophes.
n Nuclear war
n Biological war or benevolent biological research

* There are non-man made potential catastrophes
n Cosmic catastrophes
Ironically, we cannot know what L is until we find other alien civilizations

RESULTS OF DRAKE EQUATI ON

Unknown quantities dramatically affect outcome
${ }_{n} \cdot N=1$ (we are alone)
n $\mathrm{N}=$ few (we are rare)
$n^{*} \mathrm{~N}=$ billions (we are in good company)

Most astronomers generally agree that

$N=L$

$$
N=R^{*} \times f_{p} \times n_{e} \times f_{l} \times f_{i} \times f_{c} \times L
$$

$$
\begin{gathered}
3-6 \\
0.1-1
\end{gathered}
$$

$0.1-4$

$$
0.1-1
$$

$$
0.001-1
$$

$$
=0.5-1
$$

100-10000

Range from $\ll 1$ to 240,000
Rañge from 2400 to. 240,000.

RESULTS OF DRAKE EQUATI ON

n If N is too small, then civilizations will potentially miss each other over time
${ }_{\mathrm{n}}$ If N is large then intelligent, communicating life in the universe is commonplace
Which ultimately begs the question...:

Where is everybody?

