Welcome to The Natural World N190: Stars and Galaxies

Dale E. Mais

Pharmacologist by trade-Biotechnology
-Women's health care
-Astronomy is my hobby
dale.mais@mpiresearch.com

Welcome to Astronomy AST203: Stars and Galaxies

Dale E. Mais

Pharmacologist by trade-Biotechnology
-Women's health care
-Astronomy is my hobby
dale.mais@mpiresearch.com

The Natural World N190 COURSE OUTLINE Spring 2012

1. Organization of the Sky

The Sky. at Night

- Seasons / Lunar Phases /

Eclipses
Geocentric/Heliocentric
Cosmology
dale.mais@mpiresearch.com

2. Geocentric to Heliocentric transition The rise of the Scientific Process

Copernicus - Brahe
Kepler's Laws
Galileo
Newton's Laws
dale.mais@mpiresearch.com

*3. How we gather information: The tools of the trade

The Nature of Light Radiation

The Nature of Light Spectroscopy

The Tools of Astronomy
dale.mais@mpiresearch.com

4. The building blocks of galaxies: Stars; how they live and die

dale.mais@mpiresearch.com

5. The building blocks of Universe: Galaxies

The Milky Way Galaxy

Normal Galaxies
Types of galaxies, A
universe of galaxies
dale.mais@mpiresearch.com

All Powerpoint lecture slides are posted at my website "as pdf files

$$
\begin{aligned}
& \text { Download and print if you wish } \\
& \text { Take notes on } \\
& \text {. Can use on exams/ quizes . }
\end{aligned}
$$

Mais-ccd-spectroscopy.com
Go to links for Palomar College
dale.mais@mpiresearch.com

"The COSMOS is all that is... or ever was... or ever will be".

$$
\begin{array}{r}
\text { - Carl Sagan } \\
\text {. . COSMOS }
\end{array}
$$

Solar System Inventory: 1 Star

Solar System I nventory:

 8 Planets- Dio

The Terrestrial Planets

The Jovian Planets

The Jovian Planets

The J ovian Planets

Mimas, from Cassini fly by, 2010

Solar System I nventory: $91+$ moons

Ganymede 5262 km

Titan 5150 km

Mercury 4880 km

Callisto 4806 km

lo
3642 km

Moon

Europa 3138 km

Triton 2706 km

Pluto
 2300 km

Titania
1580 km

Solar System Inventory:

 Countless numbers of Asteroids, . . Comets, Meteors, Dust

Asteroids (some are dwarf planets now.)

What is our PLACE in the -COSMOS?

A New Scale of Things

Sun....the size of a volley ball
Earth....half the size of a BB, 100 yards away
Solar System....ends at Notre Dame campus
Pioneer Space Craft....approaching Niles

- Nearest star....State of New Mexico

Center of Milky Way Galaxy.... $40 x$ farther then Earth-Moon
$\stackrel{100000 \mathrm{ly}}{\stackrel{1}{2}}$

Virgo Supercluster

Deepest Image EVER

Organization of the Sky

-Three Main Ideas:

BWhat do we see in the sky? Bls there ORDER or CHAOS? ßHow are the motions related?

1. The Sky at Night
2. Seasons, Lunar phàses, Eclipses
3. Geocentric \longrightarrow Heliocentric Cosmology

Navigating the Night Sky -The Earth

Latitude and Longitude

Navigating the Night Sky - The Earth

Navigating the Night Sky: The Sky

Star Trails:-

Star Trails:

\because

Star Trails:

Navigating the Night Sky: The Sky

Declination and Right Ascension
Latitude and Longitude = Declination and Right Ascension

CELÉSTIAL SPHERE

It is often convenient to imagine the Earth is .at the center of a great "sphere of the sky"

Observer at North Pole

Observer at South Pole

Observer at Equator

Observer at San Diego

CONSTELLATIONS

A pattern of stars named after mythological animals, "characters" or objects.
\therefore A constellation name or pattern usually has no physical significance!

Rigel

Bayer System (J ohann Bayer 1603)

Developed the modern system of star

designations

Greek Alphabet + Possessive ending: $\alpha-$ brightest . $\beta-2^{\text {nd }}$ brightest $\quad \gamma-3^{\text {rd }}$ brightest α Centauri
β Cygni
δ Cephei

-The illusion of constellations

-The illusion of constellations

-The illusion of constellations

Constellation Borders

MECHANICS OF THE SKY:

 APPARENT MOTIONS
SOLAR DAY:

The time it takes the Sun to complete two successive crossings of the meridian.

24 hours

Caused by the ROTATION of the Earth on its axis

SIDEREAL DAY:

The time it takes for two successive crossings of a

* celestial object (other than the Sun, Moon or planets) across the meridian.
23 hours 56 minutes 4.091 seconds

Solar Day vs. Sidereal Day

Solar Day vs. Sidereal Day

ANNUAL MOTI ON OF THE SUN

B ECLIPTIC - the apparent path the Sun travels across the sky.

Lunar Craters

Comet Shoemaker-Levy

Comet Shoemaker-Levy

Cesa
www.spacetelescope.org

Mass Extinctions in 540 Million Years

Lunar Maria

Motion of the Moon with respect

 to the Celestial Sphere:§ Diurnal Motion (east -to- west)

- ß Monthly (west -to- east)
\therefore B Moves $\sim 13^{\circ}$ each day

360 degrees in_a circle/28 days $=12.9$ degrees/day

Moon Phases or Moon Shine?

LUNAR PHASES

Mother Goose \& Grimm

By Mike Peters

Lunar Phases:

Caused by the change in the orientation between the Earth, Sun, \& Moon

$$
\begin{aligned}
& \text {) ()) (} \\
& \text {) DD } 0 \\
& 00000 \\
& 0006 \\
& \text { (((() }
\end{aligned}
$$

Does the Moon Rotate on its Axis?

${ }^{*}=$

No rotation:

With rotation:

(b)

The revolution of the Earth around the Sun:

Tropical Year:
365.2422 days
*Why does the Earth experience Seasons?

1. The Sun rises and sets at

 different places along the horizon.

2. The height of the Sun at noon is

 different throulohout the venr:

3. The size of the Sun's path across the sky is different throughout the year.

4. The length of daylight compared to the length of night changes each day.

Earth-Sun Distance
 (Astronomical Unit) $\mathbf{= 9 3}$ million miles

Earth-Sun Distance
 (Astronomical Unit) $\mathbf{= 9 3}$ million miles

Earth-Sun Distance
 (Astronomical Unit) $\mathbf{= 9 3}$ million miles

Earth-Sun Distance
 (Astronomical Unit) $\mathbf{= 9 3}$ million miles

Earth-Sun Distance (Astronomical Unit) $\mathbf{= 9 3}$ million miles

Earth-Sun Distance (Astronomical Unit) $\mathbf{= 9 3}$ million miles

The Earth's rotational axis is tilted $23^{1 / 2}$ ㅇ with respect to its orbital plane. .

Earth's Orbit

Summer

Winter

Summer

The intensity of sunlight stiriking the Earth varies with location:

Sun appears low in the sky

Light from the Sun

Sun appears high ${ }^{\wedge}$ in the sky

Where on Earth is this photo taken?

 - What was the calendar date?

LONG TERM CHANGES

PRECESSION

PRECESSION

Slow change in the orientation of the Earth's axis of rotation.
B Caused by the gravitational interaction

- between the Sun, Earth; and Moon.

B Tilt of the Earth remains $23^{1} / 2^{\circ}$-BUTchanges orientation.
$ß$ Period of precession ~ 26,000 years

Precession of the Equinoxes

EGL PSES

Angular Diameter

- Angular Diameter

- Angular diameter of the Sun and Moon
$\therefore \quad$ are approximately the same.
Both Appear to be $\sim 1 / 2^{\circ}$

-Solar Eclipses

Occurs when the shadow of the Moon is cast upon the Earth.

- Can only occur at NEW MOON

Anatomy of a Solar Eclipse

Solar Eclipse seen from space:

Solar Eclipse seen from Earth:

Annular Eclipses

B The angular size of the Moon can appear smaller than the angular size of the Sun.
B The Moon's orbit is not a circle, but instead is an ellipse.

- Lunar Eclipses

Occurs when the Moon passes through the shadow cast by the Earth.

- Can only occur at FULL MOON:

c

$$
C((1,))) 0
$$

If a LUNAR ECLIPSE occurs during FULL MOON..

And a SOLAR ECLIPSE occurs during NEW MOON...-
. If there is a FULL MOON and a NEW MOON every month...
*Then why don't we experience eclipses every month??

The Moon's orbit is inclined to the Earth's orbit by 5.2°

Sun

Node

Eclipse Predictions

How do we-know how lọng an eclipse will last?
-How do we know where eclipses will. occur?

Length of Totality

The shortest time totality can last is a brief moment.

- The longest time totality can last is $71 / 2$ minutes

Total Solar Eclipse : 1997-2020

Eclipses generally come in twos:

July 11, 1991 LONG total solar eclipse

Jan 4, 1992
Annular solar eclipse

