Welcome to The Natural World N190: Stars and Galaxies

Dale E. Mais

Pharmacologist by trade-Biotechnology

-Women's health care

-Astronomy is my hobby

Welcome to Astronomy AST203: Stars and Galaxies

Dale E. Mais

Pharmacologist by trade-Biotechnology

-Women's health care

-Astronomy is my hobby

The Natural World N190 COURSE OUTLINE Spring 2012

1. Organization of the Sky

Seasons / Lunar Phases / Eclipses

Geocentric/Heliocentric Cosmology

2. Geocentric to Heliocentric transition The rise of the Scientific Process

3. How we gather information: The tools of the trade

4. The building blocks of galaxies: Stars, how they live and die

5. The building blocks of Universe: Galaxies

Normal Galaxies

Types of galaxies, A universe of galaxies

All Powerpoint lecture slides are posted at my website as pdf files

Download and print if you wish Take notes on Can use on exams/quizes

Mais-ccd-spectroscopy.com

Go to links for Palomar College

"The COSMOS is all that is... or ever was... or ever will be"

- Carl Sagan COSMOS

Solar System Inventory: 8 Planets

The Terrestrial Planets

The Jovian Planets

The Jovian Planets

tia be found at .net

The Jovian Planets

Solar System Inventory: 91 + moons

Titan 5150 km

Mercury 4880 km Callisto 4806 km

Solar System Inventory: Countless numbers of Asteroids, Comets, Meteors, Dust

Asteroids (some are dwarf planets now)

What is our <u>PLACE</u> in the COSMOS?

A New Scale of Things

Sun....the size of a volley ball Earth....half the size of a BB, 100 yards away Solar System....ends at Notre Dame campus Pioneer Space Craft....approaching Niles Nearest star....State of New Mexico Center of Milky Way Galaxy....40x farther then Earth-Moon

Virgo Supercluster

The Local Group

Virgo Cluster

Organization of the Sky

Three Main Ideas:
§ What do we see in the sky?
§ Is there ORDER or CHAOS?
§ How are the motions related?

1. The Sky at Night

- 2. Seasons, Lunar phases, Eclipses
- 3. Geocentric → Heliocentric Cosmology

Latitude and Longitude

Star Trails:

Star Trails:

Declination and Right Ascension

Latitude and Longitude = Declination and Right Ascension

CELESTIAL SPHERE

It is often convenient to imagine the Earth is at the center of a great "sphere of the sky"

CONSTELLATIONS

A pattern of stars named after mythological animals, "characters" or objects.

A constellation name or pattern usually has no physical significance!

Bayer System (Johann Bayer 1603) Developed the modern system of star designations

 $\begin{array}{ll} \mbox{Greek Alphabet + Possessive ending:} \\ \alpha - \mbox{brightest} & \beta - 2^{nd} \mbox{ brightest} & \gamma - 3^{rd} \mbox{ brightest} \\ & \alpha \mbox{ Centauri} \\ & \beta \mbox{ Cygni} \\ & \delta \mbox{ Cephei} \end{array}$

The illusion of constellations

The illusion of constellations

The illusion of constellations

Constellation Borders

MECHANICS OF THE SKY:

APPARENT MOTIONS

SOLAR DAY:

The time it takes the Sun to complete two successive crossings of the meridian.

24 hours

Caused by the ROTATION of the Earth on its axis

SIDEREAL DAY:

The time it takes for two successive crossings of a celestial object (other than the Sun, Moon or planets) across the meridian.

23 hours 56 minutes 4.091 seconds
Solar Day vs. Sidereal Day

Earth's orbit -

Earth four weeks later

> Earth two weeks later

> > Earth

Solar Day vs. Sidereal Day

ANNUAL MOTION OF THE SUN

§ ECLIPTIC – the apparent path the Sun travels across the sky.

Comet Shoemaker-Levy

Lunar Maria

Oceanus

Procellarum

Tranguillitatis

Mare Mare Imbrium Serenitatis

must lived im

Motion of the Moon with respect to the Celestial Sphere:

§ Diurnal Motion (east -to- west)
§ Monthly (west -to- east)
§ Moves ~13° each day

360 degrees in a circle/28 days = 12.9 degrees/day

Moon Phases or Moon Shine?

LUNAR PHASES

Mother Goose & Grimm

By Mike Peters

Lunar Phases:

Caused by the change in the orientation between the Earth, Sun, & Moon

Does the Moon Rotate on its Axis?

With rotation:

(b)

SHORT TERM CHANGES

THE SEASONS
The revolution of the Earth around the Sun:

Tropical Year: 365.2422 days

Why does the Earth experience Seasons?

1. The Sun rises and sets at different places along the horizon.

3. The size of the Sun's path across the sky is different throughout the year.

4. The length of daylight compared to the length of night changes each day.

The Earth's rotational axis is tilted 231/2° with respect to its orbital plane.

The intensity of sunlight striking the Earth varies with location:

Sun appears low in the sky

Light from the Sun

Sun appears high / in the sky

Where on Earth is this photo taken? What was the calendar date?

LONG TERM CHANGES

PRECESSION

PRECESSION

Slow change in the orientation of the Earth's axis of rotation.

§ Caused by the gravitational interaction between the Sun, Earth, and Moon.

§ Tilt of the Earth remains 23½° -BUTchanges orientation.

§ Period of precession ~ 26,000 years

Precession of the Equinoxes

ECLIPSES

Angular diameter of the Sun and Moon are approximately the same.

Both Appear to be ~ 1/2°

Solar Eclipses

Occurs when the shadow of the Moon is cast upon the Earth.

Can only occur at NEW MOON

Anatomy of a Solar Eclipse

Solar Eclipse seen from space:

Solar Eclipse seen from Earth:

Annular Eclipses

§ The angular size of the Moon can appear smaller than the angular size of the Sun.
§ The Moon's orbit is not a circle, but instead is an *ellipse*.

Lunar Eclipses

Occurs when the Moon passes through the shadow cast by the Earth. Can only occur at FULL MOON.

If a LUNAR ECLIPSE occurs during FULL MOON...

And a SOLAR ECLIPSE occurs during NEW MOON...

If there is a FULL MOON and a NEW MOON every month...

Then why don't we experience eclipses every month??

The Moon's orbit is inclined to the Earth's orbit by 5.2°

Eclipse Predictions

How do we know how long an eclipse will last?

How do we know <u>where</u> eclipses will occur?

Length of Totality

The shortest time totality can last is a brief moment.

The longest time totality can last is 71/2 minutes

Eclipses generally come in twos:

July 11, 1991 LONG total solar eclipse

Jan 4, 1992

Annular solar eclipse

