THE HISTORY OF ASTRONOMY

"It is therefore impossible that reason not previously instructed should imagine anything other than that the Earth is a kind of vast house with the vault of the sky placed on top of it; it is motionless and within it the Sun being so small passes from one region to another, like a bird wandering through the air."
-J ohannes Kepler
"Our ancestors were eager to understand the world but had not quite ștumbled upon the method.".

- Carl Sagan

Isaac Newton (1642-1727)

The Principia: 1686
The miracle years: 1665-1666

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

$$
f_{1}\left(u_{1}, \ldots, u_{p}\right)
$$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\int_{\gamma} f(z) d z=F(z(\beta))-F(z(\alpha))
$$

Newton's First Law

A body at rest remains at rest unless acted upon by an outside force...
$\%$

Newton's First Law cont'd

... a body in motion remains in motion moving in a straight line at constant speed unless acted upon by an outside force.

Inertiar

An object's natural tendency to resist changes in motion.

Mass:

A measure of the amount of material that makes up an object.

Weight

\therefore A measure of the gravitational force between two bodies.

$\mathbf{W}=\mathbf{m g}$
 W: weight m: mass

g : gravitational accêelération

Mass

A measure of the amount of an object's inertia

Speed:

The rate at which something moves.
$\therefore \frac{\text { miles }}{\text { hour }}$

Velocity

Speed + Direction

miles
hour
Northbound .

Acceleration:

change in velocity
change in time

Is it possible to change your velocity without changing your speed?

Is is possible to change your velocity without changing your speed?

Is is possible to change your velocity without changing your speed?

Is is possible to change your velocity without changing your speed?

Newton's Second Law

The acceleration of an object is directly proportional to the applied force and inversely proportional to its'mass.

Newton's Third Law

For every force there is an equal but opposite force.

Gravity is a contributing factor in nearly 73 percent of all accidents involving falling objects.

And yet the so-called
'federal govermment' does nothing!

Newton's laws lead to the Universal Law of Gravitation:

$F=\frac{G m_{1} m_{2}}{r^{2}}$

F = force of gravity
$\mathrm{G}=$ Universal Gravitational Constant
\because
6.67×10^{-11} Newton"m²/ kg^{2}
$m_{1}, m_{2}=$ masses of the two bodies
$r=$ distance between the two bodies

small masses = small force

Distance (r)

Measuring Newton's Constant G

Q: Do all objects fall at the same rate?

n Ancient Greeks

NO!

n Galileo
YES!
n A prediction is made by Newtonian Mechanics...

Assume a large mass (M) and a small mass (m)
the acceleration due to the force of gravity (g) :

Recall:

$$
F=m a
$$

where $a=$ acceleration due to gravity (\mathbf{g})

So: $\quad F=\mathbf{m} \mathbf{g}$

Recall:

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

$$
F_{g}=\frac{G m_{\text {object }} M_{\text {Earth }}}{r^{2}}=m_{\text {object }} g
$$

GM
 $\frac{\text { Earth }}{2}=g$

The acceleration due to gravity is independent of . small body's mass!

Orbiting Bodies

$$
0
$$

Orbital velocity:

Minimum orbital speed:

17,500 miles per hour

5 miles per second
Mach 25!

Motion if there

 is no gravitys

Is a "weightless" astronaut really weightless?

$$
\frac{(6370 \mathrm{~km})^{2}}{(6770 \mathrm{~km})^{2}}
$$

Lets return to Kepler's $3^{\text {rd }}$ Law

Kepler's $3^{\text {rd }}$ Law:

"The squares of the sidereal periods of the planets are proportional to the cubes of their semi-major axes."

$P^{2}=d^{3}$

${ }_{n} \mathrm{P}=$ Orbital Period measured in Earth years
${ }^{n} \mathrm{~d}=$ Orbital distance measured in A.U.'s
n Example: . . Jupiter
$P=11.86$ years
$P^{2}=140.6$
$\mathrm{d}=5.2$ A.U.
$d^{3}=140.6$

S.o we häve....

$$
\mathrm{F}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \quad \mathrm{~F}=\frac{\mathrm{mv}^{2}}{\mathrm{r}^{2}} \quad \mathrm{v}=\frac{2 \pi \mathrm{r}}{\mathrm{P}}
$$

$\frac{\mathrm{GMm}}{\mathrm{r}^{2}}=\frac{\mathrm{m} v^{2}}{\mathrm{r}} \longrightarrow \frac{\mathrm{GMm}}{\mathrm{r}^{2} \mathrm{~m}}=\mathrm{v}^{2} \longrightarrow \quad \frac{\mathrm{GM}}{\mathrm{r}}=\mathrm{v}^{2}$

$$
\left(\mathrm{y}=\frac{2 \pi \mathrm{r}}{\mathrm{P}}\right)^{2} \quad \because \mathrm{v}^{2}=\frac{4 \pi^{2} \mathrm{r}^{2}}{\mathrm{P}^{2}} \longrightarrow \frac{\mathrm{GM}}{\mathrm{r}}=\frac{4 \pi^{2} \mathrm{r}^{2}}{\mathrm{P}^{2}} \longrightarrow
$$

$$
\Rightarrow \quad \frac{4 \pi^{2}}{G} \cdot \frac{r^{3}}{P^{2}}=M
$$

Hubble back in business

Hubble back in business
:

But how Universal is the Law of Gravity

could heliocentric model plus Kepler's laws predict better than geocentric model

- Solar System travel - Venus Transit
- Star Cluster orbit

Voyager $1(118 \mathrm{AU})$ and

- 2(96 AU): (32:50, 28:38) 1977-20011 and going strong

TRANSIT DATES - December 1631
 - December 1639

- June 1761
- June 1769
-December 1874
- December 1882
- June 2004
- June 2012
- December 2117
- December 2125

December 6, 1631.

J oannis Kepler
(1571-1630)

It's All in the Geometry

© Anglo-Australian Observatory

M31, the Great Andromeda Galaxy

You are here

The Nature of Light

$\stackrel{*}{*}$
n Astronomy is observational not experimental (in general)
n All things in nature radiate energy as light.
n. If we can understand the nature of light, then we can understand \therefore the nature of the objects emitting the light.

n What is light?

n How does light behave?
n What can we learn from light?

What is the speed of light?

Ole Roemer (1676)

Ganymede

The Speed of Light
n Áccurately measured in a vacuum:

186,282 miles per second!

11 million miles per minute
671 million miles per hour
5.9 trillion miles per year

The Speed of Light

n Light's finite speed has important and. bizarre consequences.
n It takes time for light to travel a given distance.

Moon:

- 234,000 miles 1.25 seconds

Sun:

93 million miles

8 minutes 19 seconds

J upiter:

400 million miles
36 minutes

Betelgeuise:
 -427 years
 Betelgeuse

Rigel:

773 years
Orion Nebula:
1600 years

M51 galaxy:
 23 million years

Light year

The distance a beam of light will travel in one years time.
-.. 5.9 Irillion miles

5,900,000,000,000 miles

Betelgeuise:

427 light years
 Betelgeuse

Rigel:

773 light years

Orion Nebula:
1600 light years
Alnilam Mintaka
Alnitak

Rigel

M51 galaxy:
23 million light years

Thus, looking into space is to travel in a time machine

