

An Atom

Protons: + charge
determines chemistry

Neutrons: no charge

* adds stability adds mass

Electrons: - charge
interacts with rest of world interảcts with light

The Simplest: Hydrogen

Generation of Emission or Absorption Line Spectrum.

Why do astronomers use telescopes?

1. Light Gathering Power

Gathering more light makes faint objects appear brighter.

Objects that are normally too distant and faint
$\therefore \quad$ to be seen with the eye can be seen with a telescope.

Modest sized telescope (MLO 40inch):
Area of telescope opening $=\pi r^{2}$
Ärea $=\pi(50 \mathrm{~cm})^{2}=7,800 \mathrm{~cm}^{2}$ RATIO $=7,800 / 0.07=111,000$

2. Increased Resolution

Resolution:

The ability to see fine details in small objects.

Where is the ULTIMATE place to . : put a telescope?

THE NATURE OF STARS

Sțellar Properties:

MASS SIZE ENERGY .TEMPERATURE

- DISTANCE CHEMICAL-COMPOSITION
$\therefore \quad$ MOTION EVOLUTTION

Sțellar Properties:

MASS SIZE ENERGY .TEMPERATURE

- DISTANCE CHEMICAL-COMPOSITION

MOTION
 EVOLUTION

Stellar Distances

TRIGONOMETRIC•PARALLAX

TRIGONOMETRIC•PARALLAX

TRIGONOMETRIC•PARALLAX

The apparent shift of a "nearby" object with * respect to a distant background due to the observer's own motion.

Top Down View:

Sun/Earth

Parallax: 0.670C
Distance: 1.492

Earth View:

Stop
Show Bounds
Day/Night On

What are the limitations of
 . . Trigonometric Parallax?

Only works for the nearest stars
How can we improve upon this. method?

Earth based telescopes at best, 0.01" = 100 parsecs $=\sim 326 \mathrm{ly}$

Hipparcos, 1989, parallax to $0.001^{\prime \prime}=1000$ parsecs $=$ 3260 ly

Is there another way to measure

 - distances to stars?- (apparent brightness)
(true energy given off) \propto (distance)

APPARENT MAGNITUDE (m)

How bright an object appears to an observer on Earth

THE MAGNITUDE SCALE

Hipparchus (2 ${ }^{\text {nd }}$ Century B.C.)
Brightest stars © . $1^{\text {st }}$ magnitude
Faintest stars o $6^{\text {th }}$ magnitude
Modern astronomers kept old system but adapted" it to a modern: scale

A difference of 5 magnitudes is a difference of 100 times in brightness

$$
\sqrt[5]{100}=2.512
$$

ABSOLUTE MAGNITUDE (M)

The apparent magnitude of a star at a distance of 33 light years:

Related to the amount of energy the star is emitting
(apparent brightness)-(true energy) \propto (distance)

$$
m-M=5 \log d-5
$$

$$
m-M=5 \log d-5
$$

$m=-26.5$
$\mathrm{M}=4.83$
$\mathrm{d}=93,000,000$ miles

Luminosity vs: brightness

LUMINOSITY:
The amount of energy radiated by a star each second.

BRI.GHTNESS:

- The amount of energy radiated by a star that is received by an observer at a distance.

$$
b=\frac{L}{\left(4 \pi d^{2}\right)}
$$

Luminosity of the Sun

$L_{8}=3.9 \times 10^{26}$ watts
$390,000,000,000,000,000,000,000,000$ * watts!

The most luminous stars $\mathrm{L}=10^{6} \mathrm{~L}_{\S}$ The least luminous stars $\mathrm{L}=0.0001 \mathrm{~L}_{\S}$

If Absolute Magnitude is related to the amount of energy a star is emitting...

Then Absolute Magnitude \propto Luminosity

But how do we dëtérmine a star's luminosity??.

Wavelength (2.)

Every star's spectrum has characteristics that allőw it to be categorized.
-Originally categories were based upon the complexities of the spectrum...

A, B, C, D, E, ..: Q

Ultimately found to be similar chemical compositions, different temperatures!

Hotest
 Coolest

Surface Temperature

OBAFGKM Oh, Be A Fine Girl, Kiss Me!

Oh Brother, Astronomers Frequently Give Killer. Midterms.
Oh Brother, Another F's Gonina Kill Me.
Oh Boy, A Fuzzy Gremlin Kissed Me
Orion Battles Across Far Gaalaxies Killing Martians Only Big And Fat Guys Kiss Me.
Oh Boy, A Furry Green Kiwi-Monster

O 0 -9 Hottest \longrightarrow Coolest B 0-9
 A 0-9
 F 0-9
 G 0-9
 K 0-9
 M 0-9 Coolest
 Sun - G2

$L \propto T^{4}$

SPECTRAĹ TYPE ס TEMPERATURE

 TEMPERATURE ס LUMINOSITY- LUMINOSITY ס ABSOLUTE MAGNİTUDE*

THEREFORE...
SPECTRAL TYPE © ABSOLUTE MAGNITUDE

. Hertzsprung \& Russell

$$
m-M=5 \log d-5
$$

n Jook stars of known distances (parallax) * n. Measured their apparent magnitude

* \hat{n} Calculated the star's absolute magnitude
n Discovered a relationship...

So finally...to determine distances to stars too far away for trigonometriç parallax...

Betelgeuse

Jupiter's

Orbit

Temperature - Radius - Luminosity Relationship

$$
L=4 \pi R^{2} \sigma T^{4}
$$

$\mathrm{L}=$ luminosity of the star .
R = radius of the star
" $\mathrm{T}=$ surface temperature of the star $\pi, \sigma=$ constants

Luminosity and Brightness

Luminosity Classes

1. Super Giants

II Luminous Giants
III. Giants

IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified:..

By spectral type (OBAFGKM)

 Luminosity class (I,I!,III,IV,V)

Surface Temperature (K)

1) Measure spectral type
2) Measure m_{v}
3) Determine luminosity class
4) Place on HR diagram
5) Read Mv

Example: Record spectrum of star and find it is K0 V type

```
Read off Mv
Determine visual mag, \(\mathrm{m}_{\mathrm{v}}^{*}\)
```

$m-M=5 \log d-5$

100 fold error in d

