

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	$\frac{1}{1000}^{2}$
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{\text{Al}}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{\overset{76}{\text{Os}}}{\overset{190.2}{190.2}}$	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

The Simplest: Hydrogen

Generation of Emission or Absorption Line Spectrum

Visible Spectra of common Elements Hydroge Helium Iron

Why do astronomers use telescopes?

 Light Gathering Power
 Gathering more light makes faint objects appear brighter.
 Objects that are normally too distant and faint to be seen with the eye can be seen with a toloscope

telescope.

Modest sized telescope (MLO 40inch): Area of telescope opening = πr^2 Area = π (50 cm)² = 7,800 cm² RATIO = 7,800/0.07 = 111,000

2. Increased ResolutionResolution:The ability to see fine details in small objects.

Where is the ULTIMATE place to put a telescope?

THE NATURE OF STARS

Stellar Properties:

MASS SIZE ENERGY TEMPERATURE DISTANCE CHEMICAL-COMPOSITION MOTION EVOLUTION

Stellar Properties:

MASS SIZE ENERGY TEMPERATURE DISTANCE CHEMICAL-COMPOSITION MOTION EVOLUTION

Stellar Distances

TRIGONOMETRIC PARALLAX

TRIGONOMETRIC PARALLAX

The apparent shift of a "nearby" object with respect to a distant background due to the observer's own motion.

What are the limitations of **Trigonometric Parallax?** Only works for the nearest stars How can we improve upon this method?

Earth based telescopes at best, 0.01" = 100 parsecs = ~326 ly

Hipparcos, 1989, parallax to 0.001'' = 1000 parsecs = 3260 ly

Is there another way to measure distances to stars?

(apparent brightness)

(true energy given off)

(distance)

APPARENT MAGNITUDE (m) How bright an object <u>appears</u> to an observer on Earth

THE MAGNITUDE SCALE Hipparchus (2nd Century B.C.) Brightest stars ð 1st magnitude Faintest stars ð 6th magnitude Modern astronomers kept old system but adapted it to a modern scale A difference of 5 magnitudes is a difference of 100 times in brightness $\sqrt[5]{100} = 2.512$

ABSOLUTE MAGNITUDE (M)

The apparent magnitude of a star at a distance of 33 light years.

Related to the amount of energy the star is emitting

(apparent brightness)-(true energy) μ(distance)

 $m - M = 5 \log d - 5$

$m - M = 5 \log d - 5$

m= -26.5 M=4.83

d=93,000,000 miles

Luminosity vs. brightness

LUMINOSITY:

The amount of energy radiated by a star each second.

BRIGHTNESS:

The amount of energy radiated by a star that is <u>received by an observer</u> at a distance.

Luminosity of the Sun

$L_{x} = 3.9 \times 10^{26}$ watts

390,000,000,000,000,000,000,000,000 watts!

The most luminous stars $L=10^{6} L_{a}$ The least luminous stars $L = 0.0001 L_{a}$

If Absolute Magnitude is related to the amount of energy a star is emitting...

Then

Absolute Magnitude µ Luminosity

But how do we determine a star's luminosity??

Originally categories were based upon the complexities of the spectrum... A, B, C, D, E, ... Q Ultimately found to be similar chemical compositions, different temperatures!

F A B G Coolest Hotest Surface Temperature 06.5 HD 12993 **B0** HD 158659 **B6** HD 30584 A1 HD 116608 A5 HD 9547 F0 HD 10032 F5 BD 61 0367 G0 HD 28099 G5 HD 70178 K0 HD 23524

SAO 76803

HD 260655

Yale 1755

K5

MO

M5

O B A F G K M Oh, Be A Fine Girl, Kiss Me! Oh Brother, Astronomers Frequently Give Killer Midterms. Oh Brother, Another F's Gonna Kill Me. Oh Boy, A Fuzzy Gremlin Kissed Me **Orion Battles Across Far Galaxies Killing Martians** Only Big And Fat Guys Kiss Me Oh Boy, A Furry Green Kiwi-Monster

Hottest → Coolest 0-9 0-9 В 0-9 Α 0-9 F Sun - G2 0-9 G 0-9 Κ Μ 0-9 Coolest

 $L \propto T$

SPECTRAL TYPE & TEMPERATURE TEMPERATURE & LUMINOSITY LUMINOSITY & ABSOLUTE MAGNITUDE

THEREFORE...

SPECTRAL TYPE & ABSOLUTE MAGNITUDE

Henry Norris Russell

Hertzsprung & Russell

$m - M = 5 \log d - 5$

n Took stars of known distances (parallax)
 n Measured their apparent magnitude
 n Calculated the star's absolute magnitude
 n Discovered a relationship...

The Hertzsprung

Russell Diagram

So finally...to determine distances to stars too far away for trigonometric parallax...

Temperature – Radius – Luminosity Relationship

 $L = 4pR^2 sT^4$

L = luminosity of the star R = radius of the star T = surface temperature of the star π,σ = constants

Luminosity and Brightness

Luminosity Classes

I Super Giants
II Luminous Giants
III Giants
IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified...

By spectral type (OBAFGKM) Luminosity class (I,II,III,IV,V)

The Art of Spectroscopic Parallax

- 1) Measure spectral type
- 2) Measure m_v
- 3) Determine luminosity class
- 4) Place on HR diagram
- 5) Read Mv

Example: Record spectrum of star and find it is K0 V type

Read off Mv

Determine visual mag, m_v

$m - M = 5 \log d - 5$

100 fold error in d

