Sțellar Properties:

MASS SIZE ENERGY .TEMPERATURE

- DISTANCE CHEMICAL-COMPOSITION

MOTION
 EVOLUTION

TRIGONOMETRIC•PARALLAX

TRIGONOMETRIC•PARALLAX

The apparent shift of a "nearby" object with * respect to a distant background due to the observer's own motion.

- (apparent brightness)
(true energy given off) \propto (distance)

APPARENT MAGNITUDE (m)

How bright an object appears to an observer on Earth

THE MAGNITUDE SCALE

Hipparchus (2 ${ }^{\text {nd }}$ Century B.C.)
Brightest stars © . $1^{\text {st }}$ magnitude
Faintest stars o $6^{\text {th }}$ magnitude
Modern astronomers kept old system but adapted" it to a modern: scale

A difference of 5 magnitudes is a difference of 100 times in brightness

$$
\sqrt[5]{100}=2.512
$$

ABSOLUTE MAGNITUDE (M)

The apparent magnitude of a star at a distance of 33 light years:

Related to the amount of energy the star is emitting
(apparent brightness)-(true energy) \propto (distance)

$$
m-M=5 \log d-5
$$

$$
m-M=5 \log d-5
$$

$m=-26.5$
$\mathrm{M}=4.83$
$\mathrm{d}=93,000,000$ miles

If Absolute Magnitude is related to the amount of energy a star is emitting...

Then Absolute Magnitude \propto Luminosity

But how do we dëtérmine a star's luminosity??.

Hotest
 Coolest

Surface Temperature

O 0 -9 Hottest \longrightarrow Coolest B 0-9
 A 0-9
 F 0-9
 G 0-9
 K 0-9
 M 0-9 Coolest
 Sun - G2

$L \propto T^{4}$

SPECTRAĹ TYPE ס TEMPERATURE

 TEMPERATURE ס LUMINOSITY- LUMINOSITY ס ABSOLUTE MAGNİTUDE*

THEREFORE...
SPECTRAL TYPE © ABSOLUTE MAGNITUDE

Betelgeuse

Jupiter's

Orbit

Temperature - Radius - Luminosity Relationship

$$
L=4 \pi R^{2} \sigma T^{4}
$$

$\mathrm{L}=$ luminosity of the star .
R = radius of the star
" $\mathrm{T}=$ surface temperature of the star $\pi, \sigma=$ constants

Luminosity and Brightness

Luminosity Classes

1. Super Giants

II Luminous Giants
III. Giants

IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified:..

By spectral type (OBAFGKM)

 Luminosity class (I,I!,III,IV,V)

Surface Temperature (K)

1) Measure spectral type
2) Measure m_{v}
3) Determine luminosity class
4) Place on HR diagram
5) ReadMv

Example: Record spectrum of star and find it is K 0 V type

$$
\begin{gathered}
\text { Read off Mv } \\
\text { Determine visual mag, }{ }^{*}
\end{gathered}
$$

$m-M=5 \log d-5$

100 fold error in d

BI.NARY STARS

Binary Stars:

Two or more stars in orbit around each other.

Binary Stars:

n Usually formed together
${ }_{\mathrm{n}}$ Can be complicated multiple systems

Binary Stars:

n Gravitationally bound together
n Stars orbit a common center of mass
. . More than 50% of all stars are members of binary systems.

Triple Star

Figure 8 Orbits

Double Binary Orbits Quadruple System

Visual Binary Systems:

n Stars that can be resolved (separated) into . two or more stars through a telescope. *
n From direct observations we can plot the orbit of each star.

What about stars that are too close together to be seen as individual stars?

Eclipsing Binary Systems:

When the stars pass in front of each other we see an eclipse.

$$
\left(m_{1}+m_{2}\right) \propto \frac{d^{3}}{p^{2}} \quad \frac{m_{1}}{m_{2}}
$$

The masses of the individual stars can be calculated:

By gathering the masses of a large variety of stars in binary systems a fundamental . relationship soon became apparent.

-1. $4333 \quad 200001000002666664333332600000$ O B A F G K M

Hotest \longrightarrow Coolest

Surface Temperature

Stars within 20ly

What are the stars made out of?

The Sun is composed of: element
by \#
by mass
Hydrogen
92\%
73\% Helium
7.8\%

25\% all others
0.2\%

2\%
-. Carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, iron...

Orion

The Interstellar Medium (ISM)

Composed of gas and dust

ALMOST a perfect vacuum!

Gas:
${ }^{n} 99 \%$ of the ISM
n 1 atom $/ \mathrm{cm}^{3}$ (if spread out uniformily)

The Interstellar Medium

 Düst:n 1% of the ISM
n 1 dust grain per $10 \mathrm{~cm}^{3}$

-M51

* =

The North American Nebula

Nebula - "cloud"
Nebulae - "clouds"
HII regions
Emission nebulae

-The Rosette Nebula

Orion

The Horsehead Nebula

M16 (The Eagle Nebula)

M16 (The Eagle Nebula)

œesa
www.spacetelescope.org

M16 (The Eagle Nebula)

Cesa
www.spacetelescope.org

STELLAR FORMATION

Giant molecular clouds

Mass $\sim 10^{6} \mathrm{M}_{\dot{\mathrm{u}}}$
Size ~ 100 LY in diameter
Temp ~5-15K (-450ㅇ)

STELLAR FORMATION

Gas Pressure

Outward

(temperature)
GRAVITÁTIONAL CONTRACTION

Stellar Birth

Cloud

Stellar Birth

Stellar Birth

Main Sequence Star

The Pleiades Cluster

What is the source of the Sun's energy?

Recall the Sun's Luminosity:
390,000,000,000,000,000,000,000,000 watts

Amount of fuel
Duration $=$
Rate of consumption

Historical attempts to explain . .. energy production

- Chemical Burning (coal; wood, gas)
- 3,000 years

Gravitational Contraction

40 meters/year
50 million years

Albert Einstein (1879-1955)

.n Mass and Energy are equivalent
n A small amount of mass yields a large amount of energy

