Stellar Properties:

MASS SIZE ENERGY TEMPERATURE DISTANCE CHEMICAL-COMPOSITION MOTION EVOLUTION

TRIGONOMETRIC PARALLAX

TRIGONOMETRIC PARALLAX

The apparent shift of a "nearby" object with respect to a distant background due to the observer's own motion.

(apparent brightness)

(true energy given off)

(distance)

APPARENT MAGNITUDE (m) How bright an object <u>appears</u> to an observer on Earth

THE MAGNITUDE SCALE Hipparchus (2nd Century B.C.) Brightest stars ð 1st magnitude Faintest stars ð 6th magnitude Modern astronomers kept old system but adapted it to a modern scale A difference of 5 magnitudes is a difference of 100 times in brightness $\sqrt[5]{100} = 2.512$

ABSOLUTE MAGNITUDE (M)

The apparent magnitude of a star at a distance of 33 light years.

Related to the amount of energy the star is emitting

(apparent brightness)-(true energy) μ(distance)

 $m - M = 5 \log d - 5$

$m - M = 5 \log d - 5$

m= -26.5 M=4.83

d=93,000,000 miles

If Absolute Magnitude is related to the amount of energy a star is emitting...

Then

Absolute Magnitude µ Luminosity

But how do we determine a star's luminosity??

F A B G Coolest Hotest Surface Temperature 06.5 HD 12993 **B0** HD 158659 **B6** HD 30584 A1 HD 116608 A5 HD 9547 F0 HD 10032 F5 BD 61 0367 G0 HD 28099 G5 HD 70178 K0 HD 23524

SAO 76803

HD 260655

Yale 1755

K5

MO

M5

Hottest → Coolest 0-9 0-9 В 0-9 Α 0-9 F Sun - G2 0-9 G 0-9 Κ Μ 0-9 Coolest

 $L \propto T$

SPECTRAL TYPE & TEMPERATURE TEMPERATURE & LUMINOSITY LUMINOSITY & ABSOLUTE MAGNITUDE

THEREFORE...

SPECTRAL TYPE & ABSOLUTE MAGNITUDE

The Hertzsprung

Russell Diagram

Temperature – Radius – Luminosity Relationship

 $L = 4pR^2 sT^4$

L = luminosity of the star R = radius of the star T = surface temperature of the star π,σ = constants

Luminosity and Brightness

Luminosity Classes

I Super Giants
II Luminous Giants
III Giants
IV Sub Giants
V Dwarfs
The Sun is a Dwarf...

So finally, stars can be classified...

By spectral type (OBAFGKM) Luminosity class (I,II,III,IV,V)

The Art of Spectroscopic Parallax

- 1) Measure spectral type
- 2) Measure m_v
- 3) Determine luminosity class
- 4) Place on HR diagram
- 5) Read Mv

Example: Record spectrum of star and find it is K0 V type

Read off Mv

Determine visual mag, m_v

 $m - M = 5 \log d - 5$

100 fold error in d

BINARY STARS

Binary Stars:

Two or more stars in orbit around each other.

Mizar, 88 light years distant, is the middle star in the handle of the Big Dipper. It was the first binary star system to be imaged with a telescope. Spectroscopic

observations show periodic Doppler shifts with a period of 20.54 days in the spectra of Mizar A and B, indicating that they are each binary stars. But they were too close to be directly imaged - until 1 May 1996. when the NPOI produced the first image of Mizar A. That image was the highest angular resolution image ever made in optical astronomy. Since then, the NPOI has observed Mizar A in 23 different positions over half the binary orbit. These images have been combined here to make a movie of the orbit. As a reference point, one component has been fixed at the map center; in reality, the two stars are of comparable size and revolve about a common central position.

1996-05-01 6.3 mas 287 deg

Binary Stars:

n Usually formed together

n Can be complicated multiple systems

Binary Stars:

n Gravitationally bound together
 n Stars orbit a common center of mass
 More than 50% of all stars are members of binary systems.

Visual Binary Systems:

Stars that can be resolved (separated) into two or more stars through a telescope.

From direct observations we can plot the orbit of each star.

What about stars that are too close together to be seen as individual stars?

Eclipsing Binary Systems:

When the stars pass in front of each other we see an *eclipse*.

 $(m_1 + m_2) \propto \frac{m}{p^2}$ M_1 m_{γ}

The masses of the individual stars can be calculated.

By gathering the masses of a large variety of stars in binary systems a fundamental relationship soon became apparent.

Stellar Evolution:

Star Formation

What are the stars made out of? The Sun is composed of: element by # by mass Hydrogen 92% 73% Helium 7.8% 25% all others 0.2% 2% Carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, iron...

The Interstellar Medium (ISM) Composed of gas and dust <u>ALMOST a perfect vacuum!</u>

n 99% of the ISM

n 1 atom/cm³ (if spread out uniformly)

The Interstellar Medium Dust:

n 1% of the ISM

n 1 dust grain per 10 cm³

The North American Nebula

Nebula – "cloud"

Nebul<u>ae</u> – "cloud<u>s</u>"

HII regions

Emission nebulae

The Rosette Nebula

The Horsehead Nebula

Horsehead Nebula

NASA, ESA, and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope WFPC2 • STScI-PRC01-12

Hubble

age

M16 (The Eagle Nebula)

www.spacetelescope.org

M16 (The Eagle Nebula)

www.spacetelescope.org

STELLAR FORMATION

Giant molecular clouds

Mass ~ 10^6 M.

Size ~ 100 LY in diameter

Temp ~ 5 – 15K (- 450°F)

STELLAR FORMATION

Gas Pressure

Outward

(temperature)

Inward

Gravity

(mass of cloud)

GRAVITATIONAL CONTRACTION

Stellar Birth

Planets

Stellar Birth

Main Sequence Star

The Pleiades Cluster

What is the source of the Sun's energy?

Recall the Sun's Luminosity:

390,000,000,000,000,000,000,000,000 watts

Amount of fuel

Duration =

Rate of consumption

Historical attempts to explain energy production

Chemical Burning (coal, wood, gas) 3,000 years

Gravitational Contraction

40 meters/year

50 million years

Gravitational Contraction

Albert Einstein (1879-1955)

 $E = mc^2$

n Mass and Energy are equivalent

n A small amount of mass yields a large amount of energy

