BINARY STARS

 $(m_1 + m_2) \propto \frac{m}{p^2}$ M_1 m_{γ}

The masses of the individual stars can be calculated.

By gathering the masses of a large variety of stars in binary systems a fundamental relationship soon became apparent.

Thermonuclear Fusion

Proton – Proton Cycle 4H ® 1He + 2g

$4H = 6.693 \times 10^{-24} \text{ gm}$ -1He = 6.645 \times 10^{-24} \text{ gm}

Difference of 4.8x10⁻²⁶ gm (0.7%)

4.8 x 10⁻²⁶ gm

E=mc

LIGHT

Some incredible numbers... The proton-proton cycle occurs 10³⁸ times/second

Each second:

624 million tons of hydrogen Fuses to become 620 million tons of helium 4 million tons of hydrogen becomes energy

$M_{\pi} = 1.99 \times 10^{30}$ kilograms

Sun's lifetime ~ 10 billion years

30% – 40% of total mass is lost

2. Intermediate Mass Stars 0.5 < M, < 8</p>

Planetary Nebula (has nothing to do with planets!!)

White Dwarf Stars

n Composed mostly of carbon n Surface temperatures of 50,000 K or more n <u>NO</u> internal energy source n Earth sized n Mass is that of remnant stellar core n VERY DENSE!

White Dwarf Star

11,000 tons per cubic inch

Limit ~ 1.4 solar M

40 Eridanus B

The electrons did!

Gravits

Electrons have a limit to how tightly they can be packed together
"ELECTRON DEGENERACY PRESSURE"

BUT! Electron Degeneracy Pressure has its limits

Gravity can overwhelm the electrons if the mass is high enough..

M < 1.4 M. Chandrasekhar Limit

What happens if the core of the star that remains is GREATER than the Chandrasekhar Limit?

3. High Mass Stars M. > 8

25 M. star <u>Element</u> Hydrogen Helium Carbon Neon Oxygen Silicon Iron

Temperature 4x10⁷ K 2x10⁸ K 6x10⁸ K 1.2x10⁹ K 1.5x10⁹ K 2.7x10⁹ K none!

Duration 7x10⁶ yrs 5x10⁵ yrs 600 yrs 1 year months days hours

Silicon \rightarrow Iron

Iron core

Iron core < 1.4M. Continual silicon fusion increases mass of core Eventually Iron core = 1.4M.

Iron core > 1.4M. Iron core cannot support itself against gravity Iron core collapses...

Fe

Supernova 1987a

July, 1054 A.D.

Synthesis of the Elements

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 <u>He</u> 4.003
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{Al}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{\overset{76}{\text{Os}}}{\overset{190.2}{190.2}}$	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

Isotopes of the elements

 ${}^{12}C = 6 \text{ protons} + 6 \text{ neutrons}$ ${}^{13}C = 6 \text{ protons} + 7 \text{ neutrons}$ ${}^{14}C = 6 \text{ protons} + 8 \text{ neutrons}, \text{ unstable } t_{1/2} = ~6000 \text{ years}$ ${}^{15}C = 6 \text{ protons} + 9 \text{ neutrons}, \text{ unstable } t_{1/2} = ~12 \text{ years}$

Historical

1930's Hans Bethe discovers mechanisms by which stars shine
fusion of hydrogen to helium primary energy source

• In the 1940's and early 1950's as Big Bang picture for origin of Universe was developing – elements cooked up early in expansion

• Early 1950's this started to give way to the stars being the most likely place

Fred Hoyle, Cambridge
William Fowler, Cal Tech
Geoffrey Burbidge
Margarate Burbidge

• The seminal observation was detection of technetium in atmospheres of old (>several 10⁹ years) stars

The 3rd Dimension of the Periodic Table

Valley of Stability

Nucleosynthesis in Stars by s-process (slow neutron capture)

1	Se66	Se67	Se68	Se69	Se70	Se71	Se72	Se73	Se74	Se75	Se76	Se77	Se78	Se79	Se80
	0+	~	0+	(3/2-)	0+	3/2-5/2-	0+	9/2+	0+	5/2+	0+	2-		→	0+
		ECp	EC	ECp	EC	EC	EC	EC	0.89	EC	9.36	7.65	23.78	β.	49.61
	A\$65	As66	A367	A:68	As69	As70	As71	As/2	As73	As74	As75	A576	As77	As78	As79
			(5/2-)	3-	5/2-	4(+)	5/2-	2-	3/2-	2-	3/2	\rightarrow	32-	2	3/2-
	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC,8	100	β	8	β.	β.
	Ge64	Ge65	Geőő	Ge67	Ge68	Ge69	Ge70	Ge71	Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78
	0+	(3/2)-	0+	1/2-	0+	5/2-	0+	.	•) +		\rightarrow	0+	7/2+	0-
er	EC	ECp	EC	EC	EC	EC	21.23	EC	27.66	7.75	35.94	β .	7.44	9	9
p	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	Ga69	Ga70	Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77
	3/2-5/2-	0+	3/2-	0-	3/2-	1+	3	\rightarrow	3.2-	\rightarrow	32-	(3-)	32-	(2+,3+)	(3/2-)
JU	EC	EC	EC	EC	EC	EC	69,165	ECS	39.882	9		β		9	
D	Zn62	Zn63	Zn64	Zn65	Zn66	Zn67	Zn68	Zn69	Zn70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76
	0+	3/2-	0+	5/2-	0+	52-	<u></u> !:	-	0+	→ I	0-	(1/2)	0+	(7/2+)	0+
0	EC	EC	45.6	EC	27.9	41	18.8	β.	0.6	β.	8	β	\$		9
P	Cuól	Cu62	Cu63	Cu64	Cu65	Cu66	Cu67	Cu68	Cu69	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75
	3/2-	1+	3/2	\rightarrow	3/3	→ ·	3/2-	1+	3/2-	(1+)	(3/2-)	(1+)		(1+,5+)	1
	EC	EC	69.17	ECR	30.55	8	9	e *	8	9		8	8	9	8.
	Ni60	Ni61	Ni62	N103	Ni64	N105	N100	N107	N168	N169	N170	N171	N172	N173	N174
	0+	3/2-	6+	•	0+	2	0+	(1/2-)	0+	11.4 s	0+	130 1	0+	0301	0+
	26.223	1.140	3.634	9	0,926	8	9	9	8	9		8	8	9	9

Neutron number

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

OCTOBER, 1957

B²FH

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 <u>He</u> 4.003
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{Al}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{\overset{76}{\text{Os}}}{\overset{190.2}{190.2}}$	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

NEUTRON STARS

What happened to the iron core after the supernova?

NEUTRON STAR

N N N N N Ν N N N N N N N N N N N N N N N N N N N Ν N Ν N N N N N Ν N N N N N N Ν N N N N N N Ν N N N Ν N N N Ν Ν Ν N N N N N Ν N Ν N N N N N N N N N N

neutron star

Solar-mass white dwarf

Earth

Model of a Neutron Star

Mass ~1.5 times the Sun

Solid crust
 ~1 mile thick

Diameter
 ~ 12 miles

Heavy liquid interior Mostly neutrons, with other particles

What keeps the neutron star from collapsing? Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν

NEUTRON DEGENERACY PRESSURE Neutrons have a limit to how tightly they can be packed together

Ν

Ν

Chandrasekhar Limit for neutron stars

M < 3.0 M.