Scientists find most Earth-like planet yet

Models predict planet should be either rocky or covered with oceans

Gliese 581

50% larger than earth, 5 times the mass 150 lb person would weight 333 lbs Temperature: 32-104°F 6,000,000 miles from M type star 13 days to complete orbit

Synthesis of the Elements

$\underbrace{\overset{1}{\underset{1.008}{\underline{H}}}}^{1}$	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	$\frac{1}{1000}^{2}$
3 <u>Li</u> 6.941	$\frac{4}{\frac{\text{Be}}{9.012}}$											5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 0 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
11 <u>Na</u> 22.99	$\frac{12}{Mg}$ 24.31	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 VI	10 III	11 IB 1B	12 IIB 2B	$\frac{13}{\underline{\text{Al}}}_{26.98}$	14 <u>Si</u> 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>C1</u> 35.45	$\frac{18}{\underline{Ar}}{}_{39.95}$
$\underbrace{\overset{19}{\underline{K}}}_{39,10}$	$\frac{\overset{20}{\underline{Ca}}}{\overset{40.08}{\underline{ca}}}$	$\frac{\frac{21}{Sc}}{\frac{44.96}{44.96}}$	22 <u>Ti</u> 47.88	23 <u>V</u> 50.94	$\frac{\overset{24}{\text{Cr}}}{\overset{52.00}{\text{52.00}}}$	25 <u>Mn</u> 54.94	26 Fe 55.85	27 <u>Co</u> 58.47	28 <u>Ni</u> 58.69	29 <u>Cu</u> 63.55	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80
37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	$\frac{40}{Zr}$ 91.22	41 Nb 92.91	42 Mo 95.94	43 <u>Tc</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	$\frac{46}{Pd}$	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	52 <u>Te</u> 127.6	53 <u>I</u> 126.9	34 <u>Xe</u> 131.3
58 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	$\frac{\frac{74}{W}}{183.9}$	$\frac{\frac{75}{\text{Re}}}{\frac{186.2}{186.2}}$	$\frac{\overset{76}{\text{Os}}}{\overset{190.2}{190.2}}$	$\frac{17}{10}$	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>Hg</u> 200.5	$\frac{81}{11}{204.4}$	$\frac{82}{Pb}_{207.2}$	83 <u>Bi</u> 209.0	84 <u>Po</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
										1.25							

July, 1054 A.D.

M1 - The Crab Nebula

NEUTRON STAR

N N N N N Ν N N N N N N N N N N N N N N N N N N N Ν N Ν N N N N N Ν N N N N N N Ν N N N N N N Ν N N N Ν N N N Ν Ν Ν N Ν N N N N N N N N N N

neutron star

Solar-mass white dwarf

Earth

Model of a Neutron Star

Mass ~1.5 times the Sun

Solid crust
 ~1 mile thick

Diameter
 ~ 12 miles

Heavy liquid interior Mostly neutrons, with other particles

220,000,000 tons per cubic inch

Limit ~ 3 solar M

Spin up to 38000 rpm Mag field: 10¹⁴ gauss

What keeps the neutron star from collapsing? Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν

NEUTRON DEGENERACY PRESSURE Neutrons have a limit to how tightly they can be packed together

Ν

Ν

Chandrasekhar Limit for neutron stars

M < 3.0 M.

How do we know that neutron stars actually exist? First theorized in the 1930's First discovered in 1967

Jocelyn

Bell

"pulsed" energy every 1.34 seconds

Conservation of Angular Momentum

 \langle

Faster

Rapidly rotating neutron star

-or-PULSAR

The Crab Nebula

The Crab Pulsar – Xray image

What if the core that survives the supernova blast is greater than 3.0 M.?

What keeps the neutron star from collapsing?

Neutrons have a limit to how tightly they can be packed together NEUTRON DEGENERACY PRESSURE

Chandrasekhar Limit for neutron stars

M < 3.0 M.

What if the iron core > 3.0M.

n Degeneracy pressure is overcome by gravity

n The core continues to shrink producing NO HEAT.

n No force in nature can stop the collapse

G = Universal Gravitational Constant
M = Mass of the gravitating body
R = Radius of the gravitating body

Gravity

 Gm_1m_2 2*GM* F V_{esc} r^2 R

Soon the escape velocity is greater than the speed of light!

Ultimately, the gravity is so strong that NOT EVEN <u>LIGHT</u> CAN ESCAPE!

BLACK HOLE

Radius = 0Mass = mass of the original core

Singularity

R = Schwartzschild Radius Size of event horizon depends only on MASS

Mass bends space and time

very peculiar effects on timespace becomes warped

In orbit around a Black Hole at Event Horizon

	0	
Dropped frames:	0	Sto
File size:	0	Rem
Video length:	0 Seconds	Heso
Capture length:	0 Seconds	
Capture Propertie	s	
Frame size:	404 x 388	
Frame rate:	15.0 frames/sec	
Colors:	65536 colors	
Compression:	Microsoft Video 1	
Record audio:	Enabled	

Effect of increasing velocity on Mass and Energy Requirements

As velocity increases so does kinetic energy. If v=c then K goes to infinity.

$$K = \frac{mc^{2}}{\sqrt{1 - (\frac{v}{c})^{2}}} - mc^{2}$$

As velocity increases so does m_{moving} . If v=cthen m_{moving} goes to infinity.

If object has mass of 1 kg, what is its mass at 80% c

 $1-(.8/1)^2 = 0.36$ Sqrt 0.36 = 0.6

1 kg / 0.6 = 1.666 kg

RESULTS:

<u>Nothing</u> with mass can travel AT the speed of light • However <u>NEAR</u> light speed is possible

Advantages of NEAR light speed travel: Relativistic Time Dilation

n The measurement of the passage of time is relative to the frame of reference

 The passage of time for someone moving at high speeds appears slower as seen by an observer at rest

Time Dilation as velocity increases, 1year = 525600 minutes

50% light speed

At 50% c n 1.15 seconds on earth pass for every 1 second measured by a traveler n A 10 lightyear journey would take 20 earth years

n Travelers would experience a 17 .4 year journey

75% light speed

 n 1.5 seconds on earth pass for every 1 second measured by a traveler
n A 10 lightyear journey would take 13 earth years

n Travelers would experience a 8.7 year journey

99% light speed

At 99% c

n 7 seconds on earth pass for every 1 second measured by a traveler

n A 10 lightyear journey would take 10.1 earth years

n Travelers would experience a 1 year 5 month journey

99.99% light speed

At 99.99% c

- n 71 seconds on earth pass for every 1 second measured by a traveler
- n A 10 lightyear journey would take 10 earth years
- n Travelers would experience a 1 month 2 week journey

Examples

 $M = 3 \, M_{\bullet} \qquad R_{S} = 9 \, km \, (5.4 \, mi) \\ M = 1 \, M_{\bullet} \qquad R_{S} = 3 \, km \, (1.8 \, mi) \\ M = 1 \, M_{earth} \qquad R_{S} \sim 1 \, cm$

If we can't see 'em, how do we find 'em?

Solitary stellar mass black hole

Solitary stellar mass black hole

Black hole in a binary system

Super-massive black holes in galaxies

Common misconceptions about black holes:

Not "vacuum cleaners"
Not normally made from just anything

Common misconceptions about black holes:

n No "worm holes"

Common misconceptions about black holes: n Enter at your own risk!